
Axion monodromy

Albion Lawrence, Brandeis/NYU

arxiv:1101.0026 with Nemanja Kaloper (UC Davis),  AL,  and Lorenzo Sorbo (U Mass Amherst)
Work in progress with Sergei Dubovsky (NYU),  AL, and Matthew Roberts (NYU)

and with Kaloper and AL

0/31

Saturday, April 2, 2011



I. Introduction: “high scale inflation” in UV-
complete theories

II.  4d models of axion monodromy

III.  Quantum corrections

IV. Monodromy from strongly coupled QFT

V. Conclusions

1

Saturday, April 2, 2011



Scale of inflation
Observational upper bound on GW: V � 1016 GeV ∼MGUT

Close to “unification scale”

αi = e2
i /�c

log10(E/GeV )3 16 18

α3

α2

α1
αgrav

Couplings unify (assuming MSSM above 1 TeV ) at approximately 1016 GeV.
Graph not to scale.

See also:

• p decay

• ν mass

If  V near upper bound: detectable by PLANCK or ground-based CMB polarization experiments
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Detectable primordial GWs require large inflaton range

∆ϕ� mpl

from observations

Lyth, hep-ph/9606387

to match observed flatnessupper bound on dφ
dN ,∆φ during inflation

⇒

4

• Ne =
�
dtH =

�
dφ
φ̇
H =

�
dφ
H

H
2

φ̇
� 60

•
�

δρ
ρ

�
∼ H

2

φ̇
∼ 10−5

Single field slow-roll inflation with inflaton φ

upper bound on V,H =
√
V /mpl

⇒
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Effective field theory and large φ

Effective field theory: expansion in 1/M for some UV scale M

V =
�

n gn
φn

Mn−4

generically
• gn ∼ 1
• M � mpl

Expansion breaks down for φ >M

• New degrees of freedom could become light

• Relevant d.o.f. very different

unless forbidden by symmetry
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High scale inflation looks like a highly nongeneric theory

Consider V ∼ m2φ2 or V ∼ λφ4

δρ/ρ ∼ 10−5, Ne � 60 ⇒ • m2

m2
pl
∼ 10−12

• λ ∼ 10−14

δV =
�

n gn
φn

Mn−4Corrections

all gn must be small: infinite fine tuning!

else e.g. η = m2
pl

V ��

V ≥ 1

Slow roll inflation requires approximate shift symmetry

φ→ φ + a

6

Saturday, April 2, 2011



Perturbative quantum corrections

Small couplings m2

m2
pl

, λ

mpl -suppressed couplings to gravity

⇒ loops of inflaton, graviton gives suppressed couplings

Vloop = VclassF
�

V
m4

pl
, V �

m2
pl

, . . .
�

Coleman and Weinberg; Smolin; Linde

Slow roll inflation safe against inflaton, graviton loops

perturbative corrections preserve symmetries
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UV completions make slow roll difficult to maintain

• Gravity breaks continuous global symmetries 
(Hawking radiation/virtual black holes, 
wormholes,...)

• String theory: continuous global symmetries tend to 
be gauged, anomalous

• Anomalous symmetries broken by nonperturbative 
effects (e.g. Peccei-Quinn symmetry of axion)

Continuous global symmetries like φ→ φ + a are always (we think) broken 

Holman et al; Kamionkowski and 
March-Russell; Barr and Seckel; 
Lusignoli and Roncadelli; Kallosh, 
Linde, and Susskind

δV ∼ Λ4
�

n cn cos(nφ/fφ)
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One attempt: “pseudonatural inflation”

Use anomalous symmetry to generate potential

V = Λ4 cos
�

φ
fφ

�
+ . . .

δV ∼ Λ4
�

n>1 cn cos(nφ/fφ)

cn ∼ e−nS ,
�

fφ

M

�n

Λ some dynamical scale; slow roll for fφ � Λ

large field if  fφ � mpl

Problem: fφ > mpl cnwith small does not seem to be allowed

fφ

M � 1 Banks, Dine, Fox, and Gorbatov; 
Arkani-Hamed, Motl, Nicolis, and Vafa
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Silverstein and Westphal; 
McAllister, Silverstein, and WestphalConsider compact scalar field  ϕ ∼ ϕ + f ; f � mpl

Theory invariant under shift ϕ→ ϕ + f physical state need not be

φ

V (φ)

fφ

n = −1
n = 0

n = 1n = −2

Let axion wind N times such that Nfφ � mpl

Compactness of field space seems to control quantum corrections
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Candidate solution: monodromy in field space
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Cartoon

Most models to date constructed within string theory

Illustrative example: type IIA with D4-brane wrapped on 2-torus

∼=

τ ∈ C τ + 1

Shift τ → τ + 1 is symmetry of torus, but stretches D-brane.

• τ has period =1

• φ = mplτ

canonically 
normalized scalar

Shift τ n times; D-brane becomes n times as long.

V (φ) ∼ m4
s

gs

�
1 + (mplφ)2

Doesn’t quite work but illustrates point.  
Note potential flattens:

But see Berg, Pajer, and Sors; Kaloper 
and Sorbo

n = # of D4 windings

11
V ∼ M3φ at large φ
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V ∼M4−pϕp<2

14

• Known string realizations seem to give flat potentials, with relatively small 
powers

Seems to the result of coupling to moduli, KK modes

Dong, Horn, Silverstein, and Westphal

Is a quadratic potential viable?

• Quantum corrections studied model by model: these are complicated, and 
physical reason for flat potentials is not completely transparent.

CMB data: p <=2 viable, smaller p more viable
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Effective field theory approach

• Input basic fields, symmetries, topology of field space

• Expand action in powers of 1/M (M = UV scale), include all 
terms consistent with symmetries

• Pinpoints physics behind suppressing corrections to slow roll

• Isolates fine tuning required.

• Provides a framework for building new string models

String theory has a complicated landscape
Realistic models very hard to construct
Quantum corrections difficult to compute

⇒ 4d effective field theory
analysis is always important

15
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II. 4d models of axion monodromy

Axion-four form model Kaloper and Sorbo

Sclass =
�

d4x
√

g
�
m2

plR− 1
48F 2 − 1

2 (∂ϕ)2 + µ
24ϕ∗F

�

Fµνλρ = ∂[µ Aνλρ] U(1) gauge symmetry: δAµνλ = ∂[µ Λ νλ]

ϕ periodic: ϕ→ ϕ + fϕ

F does not propagate.
U(1) quantized Fµνλρ = ne2�µνλρ ; n ∈ Z

n can jump across domain walls/membranes
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Dynamics

Hamiltonian:

Compact U(1): pA = ne2

Htree = 1
2p

2
φ + 1

2 (pA + µφ)2 + grav.

Consistency condition: µfϕ = e2

conserved by Htree

Jumps by membrane nucleation

Realizes monodromy inflation: theory invariant if 

ϕ→ ϕ + fϕ ;n→ n− 1

Good model for inflation: fits data well if µ ∼ 10−6mpl

+ observable GW

φ

V (φ)

fφ

n = −1
n = 0

n = 1n = −2

Single massive scalar degree of freedom Dvali; Kaloper and Sorbo

pA
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Large-N gauge dynamics

Sclass =
�

d4x
√

g
�
m2

plR− 1
4g2

Y M
trG2 − 1

2 (∂ϕ)2 + ϕ
fϕ

trG ∧G
�

G: field strength for U(N) gauge theory with N large; strong coupling in IR

Htree = Hgauge + 1
2p

2
ϕ + 1

2

�
nΛ2 + µϕ

�2

strong coupling scale of U(N) theoryΛ

Witten; Giusti, Petrarca, and TaglientiInstanton expansion breaks down

µ = Λ2/fϕ

Can be related to 4-form version: Fµνλρ ∼ tr G[µν Gλρ]
Dvali
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III. Quantum corrections

Sclass =
�

d4x
√

g
�
m2

plR− 1
48F 2 − 1

2 (∂ϕ)2 + µ
24ϕ∗F

�

µ ∼ 10−6mpl to match constraints on δρ/ρ, Ne

What are the possible corrections?

Effective field theory:

• Allow all terms consistent with symmetries, topology of field space
• Dimenson-d operators suppressed by Md−4

uv

Corrections controlled by:

• Compactness of scalar, U(1)
• Small coupling µ/Muv � 1

19

Stability:

• Quantum jumps between branches mediated by membrane nucleation
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Direct corrections to
Periodicity of ϕ ⇒ quantum corrections to S must be

V (ϕ)

• Functions of
• periodic functions of ϕ

∂nϕ

δV ∼ Λ4
�

n>1 cn cos(nϕ/fϕ)
V (ϕ)

ϕ

fφ � mpl

Monodromy potential modulated by periodic effects

Vcorr � 1
2µ2ϕ2 ⇒ Λ4 �M4

gut

η = m
2
pl

V ��

V � 1⇒ Λ4

f2
ϕ
� V

m2
pl

= H
2

Example: feasible if Λ ∼ .1 Mgut, f > .01 mpl
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Witten; Giusti, Petrarca, 
and Taglienti

• Gauge dynamics:

from couplings ϕ
fϕ

tr G ∧G
instanton corrections take above form (if dilute gas approx good)

strong coupling effects (when dilute gas aprox fails)

δV ∼ Λ4 mink F
�

ϕ
fϕ

+ k
�

multibranched function of ϕ

!

!

"#$#%

"#$#!&

"#$#&

"#$#!'

(

When using this effect to generate monodromy potential:
mixing between branches must be weak

When this generates corrections: mixing must be strong
(else trapped in a fixed branch)

Λ =Λ QCD

• Gravitational dynamics: Λ4 ∼ fn+4
ϕ

mn
pl

gravitational instantons, wormholes, etc.
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Caveat: moduli stabilization

In any string theory: couplings in V will depend on moduli ψ

V = V0(ψ) + 1
2µ2

�
ψ

mpl

�
ϕ2 + Λ4

�
n cn

�
ψ

mpl

�
cos

�
nϕ
fϕ

�

Periodic corrections change sign many times since fφ � mpl

Moduli must be stabilized by different 
effects than instantons coupling to inflaton

Large ϕ� mpl sources potential for ψ

Stability requires

M2
ψ ≡ V ��

0 (ψ)� Λ4

m2
pl

M
2
ψ � µ

2
ϕ

2
/m

2
pl ∼ µ

2
/� ∼ H

2
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Indirect corrections to V (ϕ)

Additional corrections must respect periodicity of ϕ

corrections to dynamics of four-form F⇒

Sclass =
�

d4x
√

g
�
m2

plR− 1
48F 2 − 1

2 (∂ϕ)2 + µ
24ϕ∗F

�

δL =
�

n dn
F 2n

M4n−4Consider

Integrate out F: F ∼ µϕ + . . .

Safe if: M4 � Vclass ∼M4
gut

Corrections of the form δL =
��

n=1 dn+1
F 2n

M4n

�
(∂ϕ)2

δVeff = Vclass ×
��

n=1 dn+1
V n

class
M4n

�

Gives same effect after redefining ϕ to be canonically normalized 

23
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Small M not always fatal

Many string theory scenarios:

M2 � mplV (ϕ) = M4
1

�
1 + ϕ2

M2
2

• For small ϕ V ∼ 1
2µ2ϕ2 ;µ = M4

1
M2

2

• For ϕ� mpl V ∼ m3ϕ; m3 = M4
1

M2

Silverstein and Westphal; 
McAllister, Silverstein, and Westphal

Out of range of 4d effective field theory; requires understanding 
of UV completion (eg 10d SUGRA) to compute

26
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Example: backreaction on compactification

Consider string modulus ψ

determines KK scale:

Lψ = 1
2 (∂ψ)2 − 1

2M2
ψψ2 + c ψ

mpl
F 2 + . . .

Integrate out ψ : ψ

mpl
= c F

2

M
2
ψm

2
pl
∼ c V

m
2
plM

2
ψ

= c H
2

M
2
ψ

δm
2
pl

m
2
pl
∼ H

2

M
2
ψ

Since η = m2
pl

V ��

V ; � = m2
pl

(V �)2

V 2

We must have
δm

2
pl

m
2
pl
∼ H

2

M
2
ψ
� 1 Moduli coupling to inflaton must be fairly heavy

L0e−ψ/mpl ;VD ∼ LD; m2
pl = mD+2

∗ VD

25

If coupling to F is: ∼ (ψ−ψ0)
2

m2
pl

F 2 corrections proportional to ψ0
mpl

ψ0
mpl

∼ 1 also edge of validity of effective field theory

Dong, Horn, Silverstein, 
and Westphal
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Example: Coleman-Weinberg corrections

Consider scalar fields ψn (e.g. moduli, KK states, etc.)

F 2 ∼ Vclass = 1
2µ2ϕ2Integrate out F:

δL ∼ 1
2 (∂ψn)2 − 1

2M2
nψ2

n −
�

k dn,k
F 2n

M4n−2 ψ2
n

Effective mass for ψ : M2
eff = M2

ψ + M2
�

k d�
n,k

V 2

M4n

Integrate out ψn : δVCW (ϕ) ∼Meff (φ)4 ln Meff

M

Must include all such states with M2
n < M2

Corrections safe if neffM2
ψ �M2 ;V �M4

26
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Kaluza-Klein corrections

Roughly neff = m2
pl

m2
∗

;m∗ = (ms, mpl,10) � Mgut

Corrections safe if Vclass �M4

VCW =
�

KK

�
d4q ln

�
q2 + M2

n,eff

�

∼ VD

�
dD+4q ln

�
q2 +

�

k

dk
V k

tree

M4k−4m2
pl

�

∼ mD+4
∗ VD(ψ) + m2

∗VD
�

k

dk
V k

tree

M4k−4m2
pl

∼ δV (ψ) + Vtree F

�
Vtree

M4

�

27

NB if KK mode couples to F as 
(ψn−ψ0,n)2

m2
pl

F 2 tree level corrections subleading if

H
2

< M
2
KK ; ψn,0 < mpl,10
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Additional “stringy” light states

Shift τ n times; D-brane becomes n times as long.

W p

Consider square torus with sides of length L; D4 wrapped n times

m2
W = m4

sL2

1+n2 ; m2
p = 1

L(1+n2) ;n = ϕ
fϕ

= F
µfϕ

n >> 1: strings have spectrum of asymmetric torus with sides of length

LW = n
m2

sL ;Lp ∼ n
L

and volume Veff ∼ n2

m2
s
∼ F 2

m2
se4

where e2 = µfϕ is unit of quantization of F flux

28
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Leading quantum correction

VCW =
�

k,l

�
d4q ln

�
q2 + m2

W,k + m2
p,k

�
+ . . .

∼ F 2

m2
se

4

�
d6q lnq2 + . . .

∼ m4
s

e4
F 2 + . . .

Effect is to renormalize e2 → m2
s ∼M2

gut ∼ 10−4m2
pl

Dangerous: µ = 10−6mpl to match observation

⇒ fϕ ∼ 102 mpl

Must ensure renormalization of e is suppressed:

29

fϕ ∼ .1 mpl ⇒ e2 ∼ (.1Mgut)2
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• NB model above is crude (and known not to work for other reasons) so this is a 
caveat and not a fatal flaw
 

• Even if
 

µ2 pushed above 10−6mpl

we may still get successful large field inflation of the form, e.g.

V (ϕ) = M4
1

�
1 + ϕ2

M2
2

but this requires more than our 4d EFT can do at present

30
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φ

V (φ)

fφ

n = −1
n = 0

n = 1n = −2

Success of monodromy inflation requires that transition 
between branches is slow compared to time scale of inflation 
(must complete 60 efolds before such transitions)

31

Quantum stability
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Transitions occur by bubble nucleation.  Let:

Bounds on membrane tension

• T = tension of bubble wall
• E = energy difference between branches

Decay probability:

Phenomenological bound on T

ϕ = Nfϕ ; ∆ϕ = fϕ

E ∼ ∆V ∼ V �(ϕ)fϕ ∼ V
N

(thin wall)Γ ∼ exp
�
− 27π2

2
T 4

E3

�
Coleman

Γ� 1⇒ T 1/3 �
�

2
27π2N3

�1/4
V 1/4

fφ ∼ .1 mpl; N ∼ 100;V ∼M4
gutLet:

Borderline; should check against explicit models
32

T � (.2V 3)1/4 ∼ (.9Mgut)3

N.B. E larger for large V; 
transitions more likely 
early in inflation
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IV. Monodromy from strongly coupled QFT

• Understand flattening of potential.

• Understand stability of metastable branches.

We wish to study monodromy in a setting where we 
have control over nonperturbative physics

Look for strongly coupled gauge theory with gravitational dual
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A nonsupersymmetric QFT

Antiperiodic boundary conditions for fermions break SUSY

N type IIA D4-branes wrapped on S1 with radius β

• g25,Y M = 4π2
√
α�gs

• g24,Y M = g25/2πβ

θ angle from D-brane coupling to RR 1-form potential

SWZ =
�
S1×R4 C(1) ∧ TrF ∧ F

For constant RR field polarized along S1

θ = 2πCββ√
α�

(Wilson line) 

Massless sector: U(N) gauge theory

Bosons get mass from loops
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Decoupling limit and gravitational dual
√
α� → 0, gs → ∞ such that g25,Y M , g24,Y M held fixed

N → ∞,λ = g24,Y MN fixed

massless open strings decouple from closed strings, 
oscillator modes at low energies

u = radial direction

∼ R4 × S1 ×Ru × S4

throat is locally 

u → 0

Dual gravity solution for small θ � N/λ = g−2
4,Y M

found by Witten (1998)

dual to QFT energy scale
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Phases of theory

(1) “Throat” is infinite -- no mass gap.  “Deconfined” phase. 

(1I) “Throat” ends at 

Vacuum energy independent of θ

u = u0

Mass gap at for small θ)

E(θ) ∼ λN2V
�
x = λθ

4π2N

�
Witten; DLR

This always has lower energy

ΛQCD ∼ u0/λ (u0 ∼ λ/β Less useful for studying
4d confinement (at small x) 

Energy dependence implies monodromy potential for θ
Think of      as nondynamical axion θ θ = φ/fφ
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0

0

Θ

E
V3

Three Branches of Vacua

Saturday, April 2, 2011



Large-x behavior
�
S1
u=∞

dχC(1)
χ =

�
dudχFuχ = θ + 2πn

For x ∼ λn
2πN � 1 must take backreaction of 2-form flux into account

• ΛQCD ∼ u0
λ ∼ 1

β(1+x2)

Throat recedes into IR, glueballs become 4d objects

• E
V3

�
x = λθ

4π2N

�
= 2λN2

37π2β4

�
1− 1

(1+x2)3

�
→x→∞

2λN2

37π2β4

�
1− 1

x6

�

Potential flattens (response of E to θ depends on             ) ΛQCD
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Stability at large x

Ru × S1 becomes long, thin cylinder
u

• Winding modes about
 

χ when 
 

x = λθ
4π2N � λ1/3

• Casimir forces dominate over RR 2-form flux when
 

x7 � Nλ1/2

 Result in both cases is to “pinch off” cylinder for
 

u > u0(x)

 But we already know a solution; branch with lower energy.
Conjecture: a given branch with x = 0 at minimum ceases to exist at large x
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Nonperturbative instabilities

D6-brane is a source for RR 2-form charge.

Two candidate domain wall solutions

• D6-brane wrapping
 

S4 sitting at u = u0 Witten

• D6-brane wrapping
 

S3(ϕ) ⊂ S4 S3(ϕ)
S4

θ = 2πn+ δ

θ = 2π(n− 1) + δϕϕ appears as QFT mode

analogous to Kachru, 
Pearson, Verlinde

filling R4

Domain wall when ϕ varies in space

Nucleation of second domain wall has lower action at large x
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ϕ = π

ϕ = 0

E

• Height of barrier
 

∆E ∼ λ2N
β4x11

at large x

• Scaling applied to DBI action of D6
 

S ∼ λ2N
x11

metastable branch beginning at x = 0 should end when x11 � λ2N
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V. Conclusions

• Check stability in explicit string models

• Interesting observational signals if a single branch-changing 
or mass-changing bubble nucleates early within our horizon?

• General issue: monodromy inflation does not seem 
parametrically safe. Should we worry?

Perhaps this is interesting:

• Implies number of e-foldings could be close to lower bound
• Implications for measurements of curvature, pre-inflation transients

33

• Other interesting applications of axion monodromy

Dubovsky and Gorbenko 
Kerr black holes; axion condensation
via Penrose process.  Instability/
disappearance of branch can lead to 
observable axion decays

Kaloper and AL, in 
progress
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