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l. Introduction

Scale of inflation

Observational upper bound on GW: V <10 GeV ~ Mgyt

Close to “unification scale”

a; = e?/hc
a3
Q2
Xgrav
1 g
: —
3 16 18 log,(E/GeV)
Couplings unify (assuming MSSM above 1 TeV) at approximately 1016 GeV.
Graph not to scale.

See also:
e p decay

® [ INass

If V near upper bound: detectable by PLANCK or ground-based CMB polarization experiments
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Detectable primordial GVVs require large inflaton range

. . . L Lyth, hep-ph/9606387
Single field slow-roll inflation with inflaton q§ yELNEPP

® (%) ~ 7 ~ 10 2 from observations

e No= [dtH = [ FH = fdM > 60

upper boundon V, H = \/V/mpl
—

d¢

TN 3 A¢ during inflation to match observed flatness

upper bound on

= Ap > Mol
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Effective field theory and large ¢

Effective field theory: expansion in |/M for some UV scale M

V = Zn gn Mqéz—zl

® g, ~ 1 unless forbidden by symmetry

generically
o M S my

Expansion breaks down for ¢ > M

® New degrees of freedom could become light

® Relevant d.of. very different
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High scale inflation looks like a highly nongeneric theory

Consider V ~ m2¢? or V ~ \op*

5p/p~1075 N, >60 = = m2

Y

Corrections 0V = > gnM(bT!

all 9n must be small: infinite fine tuning!

/7
elseeg. 1 = mglVT > 1

Slow roll inflation requires approximate shift symmetry

o —¢+a
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Perturbative quantum corrections

Small couplings m* A\

m2,
pl

m,,; -suppressed couplings to gravity

—> loops of inflaton, graviton gives suppressed couplings

/
‘/loop — chLSSF (m‘gl | 77‘7//21 ) oo ) Coleman and Weinberg; Smolin; Linde
p p

Slow roll inflation safe against inflaton, graviton loops

perturbative corrections preserve symmetries
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UV completions make slow roll difficult to maintain

Continuous global symmetries like @ — @ =+ @  are always (we think) broken

® Gravity breaks continuous global symmetries

Holman et al; Kamionkowski and

(Hawking radiation/virtual black holes, March-Russell; Barr and Seckel;
Lusignoli and Roncadelli; Kallosh,
wormholes,...) Linde, and Susskind

® String theory: continuous global symmetries tend to
be gauged, anomalous

® Anomalous symmetries broken by nonperturbative
effects (e.g. Peccei-Quinn symmetry of axion)

OV ~ A* > ¢, cos(nd/ fo)
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One attempt: “pseudonatural inflation”

Use anomalous symmetry to generate potential

V:A‘lcos(]?;) -

OV ~ A*>" e cos(ng/ fy)
A some dynamical scale; slow roll for f¢ > A
large field if [¢ > My

Problem: f¢ > myp with ¢,, small does not seem to be allowed

fﬁd} > 1 Banks, Dine, Fox, and Gorbatoy;
Arkani-Hamed, Motl, Nicolis, and Vafa
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Candidate solution: monodromy in field space

. ] Silverstein and Westphal;
Consider compact scalar field p~p + f ) f < Mpl McAllister, Silverstein, and Westphal

Theory invariant under shift © — @ + f bhysical state need not be

Let axion wind N times such that IV f4 > my,

Compactness of field space seems to control quantum corrections
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Cartoon

Most models to date constructed within string theory

and Sorbo

lllustrative example: type IIA with D4-brane wrapped on 2-torus

® T has period =|
® O =My T

canonically
normalized scalar

V($) ~ ™o /T+ (mpd)?

n = # of D4 windings

Doesn’t quite work but illustrates point.

Note potential flattens:

But see Berg, Pajer, and Sors; Kaloper

[ =/

Shift 7 — 7 4+ 1 is symmetry of torus, but stretches D-brane.

|l

Shift 7 n times; D-brane becomes n times as long.

V ~ M?>¢ atlarge ¢
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Known string realizations seem to give flat potentials, with relatively small
powers V ~ M4—p90p<2

Seems to the result of coupling to moduli, KK modes
Dong, Horn, Silverstein, and Westphal

Is a quadratic potential viable!?

CMB data: p <=2 viable, smaller p more viable

Quantum corrections studied model by model: these are complicated, and
physical reason for flat potentials is not completely transparent.
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Effective field theory approach

® |nput basic fields, symmetries, topology of field space

® Expand action in powers of |/M (M = UV scale), include all
terms consistent with symmetries

® Pinpoints physics behind suppressing corrections to slow roll
® |solates fine tuning required.

® Provides a framework for building new string models

String theory has a complicated landscape
Realistic models very hard to construct —
Quantum corrections difficult to compute

4d effective field theory
analysis is always important
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ll. 4d models of axion monodromy

Axion-four form model  Kaloper and Sorbo
Scla,ss — fd4513\/§ (mglR — 4_18F2 — %(890)2 -+ Q%QO*F)

F,UJVAP — a[MAVAP] U(1) gauge symmetry: 514/,“/)\ — a[,u Al/)\]
o periodic: © — @ + [,

F does not propagate.

U(l) quantized Flruxp = ne?

Euvrp 3 N E L

n can jump across domain walls/membranes
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Dynamics

Single massive scalar degree of freedom Dvali; Kaloper and Sorbo

Hamiltonian: Hyipee = %pé -+ % (pA -+ ,ugb)2 + grav.

Compact U(l): pa = ne?

DA conserved by Hipee

Jumps by membrane nucleation

Consistency condition: ff, = €2

Realizes monodromy inflation: theory invariant if

p—> o+ foin—mn—1

Good model for inflation: fits data well if (& ~ 10_6mpl

+ observable GW
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Large-N gauge dynamics
Sctass = [ d4x\/§ (mglR — 492;1:1‘6*2 — %(39@)2 + fitrG A G)
Y M ¥
G: field strength for U(N) gauge theory with N large; strong coupling in IR

Instanton expansion breaks down Witten; Giusti, Petrarca, and Taglienti
_ 1.2 1 2 2
Htree — +dgauge + §p<p T 2 (nA T /LQO)

A strong coupling scale of U(N) theory
2
p=A"/f,

Can be related to 4-form version: F,uu)\p ~ tr G[W/ GAp] Dvali
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lll. Quantum corrections
Sclass = [ d*x\/g (m?ﬂR — = F? — 2(9¢)* + Q—ﬁgp*F)
p~ 107°%myp; to match constraints on §p/p, N,

What are the possible corrections!?
Effective field theory:

* Allow all terms consistent with symmetries, topology of field space
* Dimenson-d operators suppressed by /94

Corrections controlled by:

e Compactness of scalar, U(I)
e Small coupling /M, < 1

Stability:

e Quantum jumps between branches mediated by membrane nucleation

Saturday, April 2, 2011



Direct corrections to V ()

Periodicity of ¥ = —>  quantum corrections to S must be

e Functions of 0"
* periodic functions of

OV ~ A*S" e cos(ng/ fy) V(o)

qu <K mpl

Monodromy potential modulated by periodic effects

Veorr < 5p29% = A < M,

2 VY A? V. orr2
n=myv <l=%5<5=H

£2
JF99 pl

Example: feasible if A~ 1 Mgut; f > .01 Mpl

20
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* Gauge dynamics: A =\ oo p
from couplings 2tr G A GG

©®
instanton corrections take above form (if dilute gas approx good)

strong coupling effects (when dilute gas aprox fails)

oV ~ A4 mink E (f£ + k) Witten; Giusti, Petrarca,
©®

and Taglienti
multibranched function of ©

When using this effect to generate monodromy potential:
mixing between branches must be weak

When this generates corrections: mixing must be strong

(else trapped in a fixed branch)

n—+4

Jo
n
mo

e Gravitational dynamics: A4 ~

gravitational instantons, wormholes, etc.

21
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Caveat: moduli stabilization

In any string theory: couplings inV will depend on moduli 9

V= Vo(¢) + 54 ( )SO FATY, e (’ffl)cos(?}f)

p

Periodic corrections change sign many times since f¢ << Tp]

Moduli must be stabilized by different
effects than instantons coupling to inflaton

M2 = Vi () > L&

pl

Large ¥ > Myl sources potential for 1)

Stability requires be > M2902/m1291 ~ /ﬂ/g ~ H?

22
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Indirect corrections to V()

Additional corrections must respect periodicity of ©

—> corrections to dynamics of four-form F

Setass = [ d'z /G (mE R — £ F? = 5(00)* + 147 F)

Consider 0L =) aniin4

Integrate out F: F' ~

V’rL
5Veff — Vclass X (anl dn—l—l ]\cjiis)

Safe if: M* > Vetass ~ M ;lut

2n
Corrections of the form 0L = (anl dp+1 %) (890)2

Gives same effect after redefining p to be canonically normalized

23
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Small M not always fatal

Many string theory scenarios:

McAllister, Silverstein, and Westphal

5 : . ,
V(gp) _ M{L\/l _|_ ;\04_22 M2 < mpl Silverstein and Westphal;

_A4(4
eForsmall ¥ V ~ 24202 =4
s S H M2

4

e For © > My VNmSSp; mgz%

Out of range of 4d effective field theory; requires understanding
of UV completion (eg 10d SUGRA) to compute

26
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Example: backreaction on compactification

Consider string modulus w

determines KK scale: Loe—w/mpz;VD ~ LD; m2, = mP+T2y,

pl — 7
_ 1 2 _ 1 2,42 Y 2
Lw — 2(8770) 2M¢¢ | CmplF —l_...
(R £ v _ _H?
Integrate out U — C ~ C — CHor2
grateout U - = Carzmr, Y Cnz iy T
mzl M«?b
Since 2 V2 V)
="My €= My~
5m22)l H?2 : : : -
We must have —o— ~ 77 <K 1 Moduli coupling to inflaton must be fairly heavy
pl P

2
If coupling to Fis: ~ (?,D—;bo) F'? corrections proportional to Y0 Dong Horn, Silverstein,
m, Mp;  and Westphal

Yo .- .
p— 1 also edge of validity of effective field theory N
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Example: Coleman-Weinberg corrections

Consider scalar fields @Dn (e.g. moduli, KK states, etc.)

5L ~ 3(On)? = SMEYE — 32, do ks

Integrate out F: F? ~ class — %,u2g02

Effective mass for ) : M rr= M2 + M? . k]\}/jn

Integrate out ), : Vew (@) ~ Meff(¢)4 In %

Must include all such states with M,,% < M?

Corrections safe if neffM@QD < M? V< M*

26
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Kaluza-Klein corrections

2
mpl

Roughly neff —

2
m3

Vew

k

y My — (msampl,l()) Z Mgut

> [ (422 )
KK

D44 2 Vir
~ VD/d g g +deM4ij‘;n2

~ m*D+4VD (¢) —+ sz,D Z dp. tree

Corrections safe if V., << M*

NB if KK mode couples to Fas 22— 50n)” p2

pl

H2 < MIQ{K 3 ¢n,0 < mMpl,10

tree level corrections subleading if

27
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Additional “stringy” light states

W/

Shift 7 n times; D-brane becomes n times as long.

Consider square torus with sides of length L; D4 wrapped n times

4 2
2 s L 2 _ 1 _ P F
Miy = Tinrs My = T "= 1o = uf

n >> |:strings have spectrum of asymmetric torus with sides of length

— n
Ly = m2L Ly ~ T
2 2
7 F
and volume V ~N —s Y —5—
e 2 2 o4
rf mse mse
where €2 = ,ufgo is unit of quantization of F flux

28
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Leading quantum correction

Vew = Z/d4q In (q2 +m‘2/[/’k +m§,k) + ...
k,l
F2
~ d®q Ing® +
m2el / q g
4
Mg o
~ Fe+ ...
Effect is to renormalize €2 — m? ~ Mg2ut ~ 10_4m12)z

Dangerous: = 10"%m,; to match observation
= fgo ~ 10? Myl

Must ensure renormalization of e is suppressed:

fo~.1my = e’ ~ (-1Mgut)2

29
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* NB model above is crude (and known not to work for other reasons) so this is a
caveat and not a fatal flaw

e Even if M2 pushed above 10_6mpl

we may still get successful large field inflation of the form, e.g.

V(p) = Mf\/l + Aﬁ—}

but this requires more than our 4d EFT can do at present

30
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Quantum stability

Success of monodromy inflation requires that transition
between branches is slow compared to time scale of inflation
(must complete 60 efolds before such transitions)

31
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Bounds on membrane tension

Transitions occur by bubble nucleation. Let:

* T = tension of bubble wall
* E = energy difference between branches

27w T

Decay probability: 1" ~ exp ( 5 Eg) (thin wall)  Coleman

Phenomenological bound on T

QOZNfgo §A90:fg0
B~ AV ~ V() fy~

V1/4

P <1=TY> (55y)

Let: fo ~ .1 my;; N ~100;V ~ M?

gut

T > (2V3)V4 ~ (9M )3

Borderline; should check against explicit models

N.B. E larger for largeV;
transitions more likely
early in inflation

32
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IV. Monodromy from strongly coupled QFT

We wish to study monodromy in a setting where we
have control over nonperturbative physics

® Understand flattening of potential.

® Understand stability of metastable branches.

Look for strongly coupled gauge theory with gravitational dual
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A nonsupersymmetric QFT

N type IIA D4-branes wrapped on S§'1 with radius 5

Antiperiodic boundary conditions for fermions break SUSY

Bosons get mass from loops o g2, =4r2/dlg,
- o oy = g3/278
Massless sector: U(N) gauge theory 94,ym = 95/ 4T

) angle from D-brane coupling to RR |-form potential

Swz = fSlxR4 CUOANTTFAF

For constant RR field polarized along §'1 (Wilson line)

é? . 237T'(:7/3 ﬁg
= Vo
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Decoupling limit and gravitational dual

vVao — 0, gs — OO such that gg,YMﬂin held fixed
N — 0, )\ — gZ,YMN fixed

massless open strings decouple from closed strings,
oscillator modes at low energies

B N

~R*x S'x R, x S*

u%()

u = radial direction  dual to QFT energy scale

Dual gravity solution for small 8 < N/ = 9ds. ?/M
found by Witten (1998)
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Phases of theory

(1) “Throat” is infinite -- no mass gap. “Deconfined” phase.

Vacuum energy independent of 6)

(I1) “Throat” ends at u = uyg

L ful f dyi
Mass g9 3t Ao ~ o/ (g ~ A/f for small ) L5 uselul for studying

E(0) ~ AN?V (z = 2%-)  Witeen; DLR
This always has lower energy

Energy dependence implies monodromy potential for

Think of @ as nondynamical axion ) = ¢/f¢
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'Three Branches of Vacua
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Large-x behavior

fsi:oo dxCB((l) = [dudxFu, =0+ 2mn

For o= ~ Qi‘r—?\, > 1 must take backreaction of 2-form flux into account

1

Throat recedes into IR, glueballs become 4d objects

E _ A0\ _ 2)\N-? 1 2AN? 1
*v (2= 52x) = 372 B (1 (1—|—az2)3) T?x—00 37,253 (1-25)

Potential flattens (response of E to § depends on Agcep )
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Stability at large x

R, x St becomes long, thin cylinder

* Winding modes about X' when g = 4?26]\[ > \1/3

e Casimir forces dominate over RR 2-form flux when 27 > N )\1/2

Result in both cases is to “pinch off” cylinder for U > U (.CI})

But we already know a solution; branch with lower energy.
Conjecture: a given branch with x = 0 at minimum ceases to exist at large x
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Nonperturbative instabilities

Dé-brane is a source for RR 2-form charge.

Two candidate domain wall solutions

e Dé6-brane wrapping S% sittingat Y = UQ  Witten

o Dé-brane wrapping S3(¢) C G4 S°()
filing R*
o appears as QFT mode
analogous to Kachru, 0 = 2nn + 6
Pearson, Verlinde
Domain wall when ¢ varies in space

Nucleation of second domain wall has lower action at large x
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e Height of barrier AE ~ fo]}fl at large x

e Scaling applied to DBI action of D6 S ~ ijlv

metastable branch beginning at x = 0 should end when 1! > \2N
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V. Conclusions

® Check stability in explicit string models

Kaloper and AL, in
® Interesting observational signals if a single branch-changing progress

or mass-changing bubble nucleates early within our horizon?

® General issue: monodromy inflation does not seem
pbarametrically safe. Should we worry!?

Perhaps this is interesting:

* Implies number of e-foldings could be close to lower bound
* Implications for measurements of curvature, pre-inflation transients

® Other interesting applications of axion monodromy

Kerr black holes; axion condensation
via Penrose process. Instability/
disappearance of branch can lead to
observable axion decays

Dubovsky and Gorbenko

33
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