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Outline

How do we decide if there are bubble collisions in CMB data?

Review of Bayesian statistics.
What are we testing? (model assumptions)
An analysis strategy.
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Bayesian statistics

The goal: P(Model, © | data) How should | bet?

Bayes’ Theorem:

P(©)P(data |Model, ©)

P(Model, © | data) = P(data |[Model)

Theory prior: P(@) /p(@)d@ —1
Likelihood: P(data |Model, ©)

Evidence (model averaged likelihood): P(data |Model)

P(data |Model) = /d@P(@)P(data |Model, ©)
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Bayesian statistics

The likelihood is used to quantify how consistent data is with a set of
model parameters.

P(data |Model, ©) >

exclusion plots ~ {

This does NOT tell us how we should rank competing theories trying to
describe the same data.

To do so, we can apply Bayes’ theorem at the level of Models:

P(Model) P(data |Model)

P(Model | data) = P(data)
ata
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Bayesian model selection

Let’s say | have a model that fits the data fairly well, should |
introduce a more complicated model that might fit it even better?

We can decide by looking at the evidence ratio:

P(Model 1 | data)  P(Model 1)P(data [Model 1)  P(data |Model 1)

P(Model 0 | data)  P(Model 0)P(data |Model 0)  P(data |Model 0)

The evidence naturally implements Occam’s razor: the simpler model should
be favored. Tension between volume of parameter space and goodness of fit.

P(data |Model) = /d@P(@)P(data |Model, ©)
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Bayesian model selection

A model is specified both by:

The predictions for the data given a particular set of parameters O.

A prior P(©) that specifies what values these parameters can take.

Model O; ACDM
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Modeling bubble collisions

What kinds of parameters specify the collision model?

o Nucleation rates.
W\/ > Cosmology in our bubble.
, Properties of colliding bubbles.
W \/\/ Kinematics.

v

Our position relative to collisions.
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Modeling bubble collisions

What kinds of parameters specify the collision model?

Global properties of the collision spacetime.

Observed properties of the collision spacetime.
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Modeling bubble collisions

Given unlimited computing power, we could just simulate eternal inflation.

inhospitabl
triple collision inhospitable

)>, ng??%??iisiii!!g>

Constant time surface in our bubble.

Putting observers in different places, we could then ask what they see.
Counting various observers, we can also (perhaps) determine the prior.

triple collision o Inhospitable
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Modeling bubble collisions

This is impossible.
It is possibly also wasteful: no one observer can see all this structure.

To confront data, we also need to determine some useful phenomenological
parameters to map the fundamental parameters onto.

A first step:

Assume the collision is a

perturbation on top of inflation: ® .y

Thanks to inflation, any observer E
sees a tiny piece at last scattering:

v -\\\
\
1 280 \|
1 1
1

Deon = @(a) (G0 + 1 (T — Terit) + O((T — Zerit)?)) O(T — Terit)
global properties are embedded in the C;
observables probe a subset of the 57;
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Modeling bubble collisions

Projecting onto the past light cone of an observer:

A (I)coll (als) /1 dq)coll
T~ 2 d
T 3 i a ‘T da

Is
SW ISW doppler

+ (7- a4+ O(v?))

SW: depends only on the potential at last scattering.

ISW: depends on how the potential evolves, and how the boundary
propagates.

Doppler: depends on where we formed.
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Modeling bubble collisions

Projecting onto the past light cone of an observer:
f

ZO Eecrit 9
! Zcrit — <0 COS Ucrit 20 — Rcrit

\ \Z i 8 f(n) N 1 — cos HCI‘it 1 — cos ecrit

‘D {®(a), Co, C1, Terit } — {205 Zerits Ocrit, 0o, Do }
7

This form, with Zcrit — 0 , first found by Chang, Kleban, and Leuvi.

cos 0| OOy — 0)

Zerit # 0 depends on ISW and doppler contributions: how large?

How is this template altered by the transfer function?
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Model priors

Previous talks: observable collisions in our PLC are isotropic.
PI’(H(), ¢07 Hcrita 20 ZCI"it) — PI‘(@(), ¢O)Pr(ecrit7 205 ZCI‘it)

sin 6
Pr(6o, ¢o) = 47TO

Kinematics and observer position affects {Zo, Zcrit} and 0., .

AN dN
dy dg¢, d (cos 6,,) dz. d¢, d (cos 6,)
35
30 2.5¢%
25 200
Toy model tells us: b 15|
10 1.0
0.5 0.5¢
0 § x 37" 2 3 4 6 3 Hp z,
For all kinematical configurations. For all angles.

Until our understanding of the model improves, we choose flat priors:

1 —_ —
Pr(fut) = =, 0< foriy < Pr(eerit) = 5 qgm1 > 107" < zam <1077
'\Ucrit) = — > Verit > 5
s 2
1 —4 —4
Pr(zo):m7 —107" <2 < 10
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The data

© The data under consideration: full-sky CMB maps.

* How do we model select?
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Full-sky Bayesian analysis

Assume collisions can be treated as independent sources on the sky.
Assume that a theory is specified by the expected number of visible
collisions on the full sky:

Pr(N.|d) — Pr(NiD)r}();()d’NS)

The evidence ratio we ultimately want to calculate is:

Pr(N;|d) _ Px( Vs) Pr(d|Ny)
Pr(0|d) Pr(0) Pr(d|0)

Assume no theoretical prejudice:

Pr(Ns|d)  Pr(d|Nj)
Pr(0|d)  Pr(d|0)
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Full-sky Bayesian analysis

The actual number of collisions is drawn from a Poisson distribution:

_ NS-ZVSG_NS
Pr(NLIN) = =75
|:> Pr(d!Ns) = ZPr(NS\NS)Pr(d\NS)
N;=0

The evidence is given by:

Pr(d|Ns) = /dm1 dms . ..dmy, Pr(my, mo,...my_ )Pr(d|Ns,mi,ms,... my.)

mi = {05, 90, Oerter 20+ Zent

From the independence of each collision:

Ns
Pr(my,ma,...my,) = H Pr(m;)
1=1
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Full-sky Bayesian analysis

The likelihoods are given by:

Pr(d|Ng,m1,mo,...my,) = (27T)N113X/2|C| exp (; [d — it(mz)] c ! [d — it(m@)] )

1 Lo 1 7
Pr(d|0) = 2 2IC exp <—§d cCd )

f

Templates are defined as before: ZO} \ S ‘D
; a—
\i \Zcrit ! v

In the absence of noise and finite instrumental resolution:

20 +1
Cij = Z Ar Cg Pg(COS (9@])
12
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Full-sky Bayesian analysis

It is impossible to evaluate Pr(d|N;) (let alone Pr(d|N;) ) directly:

Inverting C,; at full WMAP resolution is impossible.
We must evaluate the likelihood over a 5 N,-dimensional parameter
space to find Pr(d|Ny) ; this is impossible for Ns > 1 |

But, what if we knew something about the possible location and size of
candidate collision events?

Bare Collision
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Full-sky Bayesian analysis

It is impossible to evaluate Pr(d|N,) (let alone Pr(d|N,) ) directly:

Inverting C,; at full WMAP resolution is impossible.
We must evaluate the likelihood over a 5 N,-dimensional parameter
space to find Pr(d|Ny) ; this is impossible for Ns > 1 |

But, what if we knew something about the possible location and size of
candidate collision events?

The compact support for each template means we don’t have to
do a full-sky analysis, mitigating the above problems!

@ I'll present the strategy.

Hiranya will present its implementation.
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Full-sky Bayesian analysis

How would this work? Lets say we have one candidate:
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Full-sky Bayesian analysis

How would this work? Lets say we have one candidate:

Split the sky into 2 regions: 1 "blob” enclosing the candidate, and the
rest of the sky.

r=1 ?:
r=2
We need to evaluate:
Pr(N|d) B _ _ Pr(d|1) _  Pr(d|2)
Prold) Pr(0|Ng) + Pr(llNS)Pr(d]O) + Pr(ZINS)Pr(d‘O) + ..

Start with the Ny = 0 term:  Pr(0|N,) = e
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Full-sky Bayesian analysis

The Ny =1 term.

Pr(d|1) = / 1 dm Pr(m)Pr(d|1,m) +/ dm Pr(m)Pr(d|1,m)
region region 2
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Full-sky Bayesian analysis

The N, =1 term. likelihood small by assumption

Pr(d\l):/. 1der(m)Pr(d\1,m)+/' 2dm,P )Pr(d|1, m)
region region

Assume we know the likelihood would be small outside of region 1:
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Full-sky Bayesian analysis

Although we only integrate over region 1, the covariance still involves the
whole sky:

20+ 1
Cij = Z = Cy Py(cosb;;)

If the blob fully encloses the template, we can approximate:

Pr(d|1) o o—(di-tim)C N di -t (m)) T2 —doClNd, )2

—1

Pr(d|0) o e i di/2 o ~dCild, 2
Under these approximations, we obtain:

Pr(d‘l) fregion 1 dm Pr(m) 6_[d1_tl(m)]cl_l[dl_tl(m)]T/Q

Y

Pr(d‘o) e—d1C;1d’11-\/2
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Full-sky Bayesian analysis

The Ny = 2 term:

Pr(d|2) = //dmldmgPr(ml)Pr(mg) X exp (—% [d —t(my) — t(m2)]C' [d — t(m,) — t(m2) ]T>

If we know the likelihood will be small in region 2, the highest likelihood
occurs when both templates are in region 1.

) = [ [ w2/ [ puf [ g
region 1 Jregion 1 region 1 Jregion 2 region 2 Jregion 2

= [ [ 0

region 1 Jregion 1

But, this is like having one template with twice the parameters!

Pr(d[1) .
Pr(d]2) > Vol(m)  (for flat priors)

We can approximate the full sum by the Ny, = 0 and Ny =1 terms.
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Full-sky Bayesian analysis

For one blob:

Pl”(]\_fsld) - _ N, — N,
Pr(0|d)

For two blobs, assuming they are well separated:

Pr(Nold) = § | o _m -2 _N
~ *+ Nge™ ' N, i
PI’(O|d> € + € (/01 + 102) + Ve P1pP2
For NN blobs:
_ Ny ©N. _N. Np N N,
o =X e 3 T I 0-6)
s ' b1,ba,...bn, i=1 i,j=1
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Full-sky Bayesian analysis

This method is a calculational trick: we use the full theory priors so there are
no a posteriori choices.

The accuracy of this method relies on how well we can identify candidate
collisions. However, it is always a lower bound on the evidence ratio!

Pr(N,|d) o NNeg=Ne Do Ao
Pr(0|d) N, Z Hpbi H (1= bup;)

Ng=0 5" bi,ba,...bn, i=1 i,j=1

Need to have both N, ~ N, and sizable Pb; to favor the collision model.

Work in progress trying to quantify the accuracy of our approximations.
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Full-sky Bayesian analysis

Easily generalized to include other data sets, i.e.polarization:

T T

NS NS
[d— Zt(mi)] c! [d— Zt(mi)] = d(T Zt(T C;; d(T) Zt(T) ]
i=1 i=1 i
+ d(T Zt(T C;}E d(E) —Zt(E)(mi)]
J L =1

+ d(E)—Zt(E)(m )] Cat [d(E) Zt(E)(mi)]

T

T

=1 =1

TT) (TE) (EE
D> . = AT

Bayesian methods can be used to rank competing theories of
spots: i.e. textures.

Generalizable to study any features in a full-sky data set.
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Conclusions

Bayesian model selection is a consistent framework for determining if we
should consider a theory with bubble collisions over one without.

To do so, it is important to parameterize the theory of bubble collisions,
and determine the priors for the parameters.

A full sky Bayesian analysis can be approximated with a patch-wise
analysis if we know something about the likelihood surface.

Nv AN, ,—N, Ny N

N 'se™ s N
Pr(0|d) = Z N Z Hpbz’ H <1_5bibj)

Ns=0 5 b1,b2,...bng 1=1 1,j=1
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Open questions

What is the mapping from a potential to a phenomenological model for
the effects of collisions on the CMB? ¢

z ;ecrit
\p\/ I::> Ow \ o T Pr(m)
\ \Zcrit

o >M,

v

Are there any correlations between LCDM parameters and collisions?

bubble collisions — detectable r

:{> Pr(m, ACDM) # Pr(m)Pr(ACDM)

bubble collisions — undetectable ),

What happens in a vast landscape?

Bayesian methods inherit the measure problem.
Question becomes academic, since the data will probably never be
good enough to distinguish models in detalil.
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