Supersymmetry Without
Prejudice




ATLAS & CMS have already made a big dent!
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» As these searches proceed we need to be sure that
the analyses don’t miss anything by assuming specific SUSY
breaking mechanisms such as mSUGRA, GMSB, AMSB, etc.

 How do we do this? There are several approaches...



Supersymmetry With or Without Prejudice?

- The Minimal Supersymmetric Standard Model has
~120 parameters

- Studies/Searches incorporate simplified versions
- Theoretical assumptions @ GUT scale

- Assume specific SUSY breaking scenarios (InNSUGRA, GMSB,
AMSB...)

- Small number of well-studied benchmark points
- Studies incorporate various data sets

- Does this adequately describe the true breadth of
the MSSM and all its possible signatures?

- The LHC is on, era of speculation will end, and we
need to be ready for all possible signals



More Comprehensive MSSM Analysis
Berger, Gainer, JLH, Rizzo, arXiv:0812.0980

- Study Most general CP-conserving MSSM

Minimal Flavor Violation
Lightest neutralino is the LSP

First 2 sfermion generations are degenerate w/ negligible
Yukawas

No GUT, high-scale, or SUSY-breaking assumptions

pMSSM: 19 real, weak-scale parameters
scalars:

Mq,, Mgy, My, Mg, My, My, M, M, M, M
gauginos: M, M,, M;

tri-linear couplings: A,, A, A,

Higgs/Higgsino: u, M,, tanp

These choices mostly control flavor issues producing a fairly
general scenario for collider & other studies



Perform 2 Random Scans

Linear Priors

107 points - emphasize
moderate masses

100 GeV < Myermions < 1 TeV
50 GeV< |M,, M,, u| <1 TeV
100 GeV< M;<1 TeV
~0.5M,< M, <1 TeV

1 <tanp <50

|Acp.l <1 TeV

Log Priors
2x10° points - emphasize
lower masses and extend to
higher masses

100 GeV < Mtermions < 3 TeV

10 GeV< M, M,, u| <3 TeV
100 GeV< M;<3 TeV

1 <tanp <60

10 GeV <[A .| <3 TeV

Absolute values account for possible phases
only Arg (M. n) and Arg (A p) are physical



Set of Experimental Constraints

- Theoretical spectrum Requirements (no tachyons, etc)
- Precision measurements:

- Ap, I'(Z— invisible)

- A(g-2)u

- Flavor Physics

- b -sy, B-1v, B =pu, Meson-Antimeson Mixing

- Dark Matter

- Direct Searches: CDMS, XENON10, DAMA, CRESST |
- Relic density: Qh2 < 0.1210 - 5yr WMAP data

- Collider Searches: complicated with many caveats!

- LEPII: Neutral & Charged Higgs searches, Sparticle production
Stable charged particles

- Tevatron: Squark & gluino searches, Trilepton search
Stable charged particles, BSM Higgs searches



Tevatron Squark & Gluino Search

2,3,4 Jets + Missing Energy (DO)

Multiple analyses keyed to

TAELE [: Selection criteria for the three anslyses (all ensrgies IOOk for'
and momenta in GeV); see the tact for further detaiks. -

Presalection Cut All Analyses Sq UarkS-> jet +MET

K =40 . .
|Vertex = 1.'1.:-5~| < 80 cm GIUanS -> 2 J -F MET
A coplanarity < 1G5~
Selection Cut “dijet” Yi-jet s “gluina”
Trigger dijet muliijet multijet
jety pr® = 35 = 35 = 35
jety pr® = 35 > 35 > 3b .
s pr” - > 35 > 35 Feldman-Cousins 95% CL
jet, P - — = 3 . . e
E:l.;_-.:-l:_:._'.|'| Vet 1..',__.5 :rE'E- :rE"E- Slgnal Ilmlt- 8-34 events
Muon veto ves VER VER
AdEr.jete) ST = o0 = a0
Ad(Er, jota) > 507 = 50° = 50°
ey ) 2 For each model in our scan
T 2 320 = S = 40U g
Er 226 217 > 100 we run SuSpect -> SUSY-Hit
".Fir:-I and s=cond jet:-ar.e- al=o rE':qLLirE':l fo b contral §|ndee| < 0.8) -> PROS PI NO -> PYTH IA ->
with an electromagnetic fraction  below 095, and o have d PGS4 f
CPFO > 0,75, _
*Third and fourth jets are required to have |pae| < 2.5, with an DO tu ne aSt

el=ciromagnetic fraction below 095,

simulation and compare to
the data



Supersymmetry Without Prejudice @ the LHC

- We passed these 70k MSSM models through the ATLAS
SUSY analysis suite (designed for mSUGRA ) to explore the

sensitivity to this far broader class of SUSY models
@ 7&14 TeV

- We employed ATLAS SM backgrounds (Thanks!!!), their
associated systematic errors, search analyses/cuts, &
statistical criterion for ‘discovery’

» We first verify that we can reproduce ATLAS results
for their benchmark mSUGRA models with our analysis
in each channel

* By necessity there are some differences between us &
ATLAS....



ATLAS

ISASUGRA generates spectrum
& sparticle decays

NLO cross section using
PROSPINO & CTEQ6M
Herwig for fragmentation &

hadronization

GEANT4 for full detector sim

FEATURE

SuSpect generates spectra
with SUSY-HIT# for decays

NLO cross section for ~85
processes using PROSPINO**
& CTEQ6.6M

PYTHIA for fragmentation &
hadronization

PGS4-ATLAS for fast detector
sim

** version w/ negative K-factor errors corrected
# version w/o negative QCD corrections & with 15t & 2nd generation fermion masses
included as well as explicit small Am chargino decays



Events/ 1 fb!
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Mg distribution for 4-jet, O lepton analysis
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— We do quite well reproducing ATLAS 7 & 14 TeV benchmarks
with some small differences due to, e.g., (modified) public
code usages

Next Steps:

 How well do the ATLAS analyses cover these pMSSM model
sets? More precisely, what fraction of these models can be
discovered (or not!) by any of the various ATLAS analyses &
which ones do the best?

e Then we need to understand WHY some models are missed
by these analyses even when high luminosities are available




How many signal events do we need to reach S=57?
Depends on the M cut which is now ‘optimized’
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Percent Found by (4,3,2)j01

Percent Found by (4,3,2)jOSDL
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Percent Found by (4,3,2)j01

Percent Found by (4,3,2)j11

Log Prlors
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@7 TeV assuming 6B=20% ?

What fraction of models are found by n analyses

# anl. | Flat Lo | Flat £, | Flat £49 | Log Ly1 | Log £ | Log Lo
0 38.172 7.5501 0.9965 6.3.64 43.988 22.92
1 0.2928 41988 | 0.90862 5.376 4.8674 | 5.8482
2 8.7432 4.6665 1.6102 3.6687 5.6665 | 6.0298
3 41.836 H9.878 | 39.573 26.008 34.907 35.38
4 0.65686 | 4.9257 7.9422 0.25427 | 2.2158 | 6.4657
5 0.53472 | 4.2629 | 6.7163 0.47221 | 2.0341 | 4.8311
6 0.54366 | 8.5391 13.494 | 0.32692 | 3.0875 | 6.5383
7 0.067026 | 2.5217 | 8.9044 | 0.21794 1.453 41773
8 0.062558 | 1.2288 | 5.6364 | 0.036324 | 0.72648 | 2.2884
9 0.077452 | 1.2958 6.548 0 0.58118 | 2.9422
10 0.013405 | 0.93241 | 7.6711 0 0.47221 | 2.57

The results are highly sensitive to the background uncertainty




Percent missed by all analyses

How good is the pMSSM coverage @ 7 TeV as
the luminosity evolves ?7?

The coverage is quite good for both model sets !
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ATLAS pMSSM Model Coverage
RIGHT NOW for ~35pb-' @ 7 TeV

OB : 100% (50%,) 20%

FLAT: 16% 29% 39%

LOG : 1M% 20% 27%

Wow! This is actually quite impressive as these LHC
SUSY searches are just beginning !



These figures emphasize the importance of
decreasing background systematic errors to
obtain good pMSSM model coverage. For Flat

priors we see that

L=5(10) fb-1 and 6B=100% is ‘equivalent’ to
L=0.65(1.4) fb-' and 6B=50% (x~7) OR to
L.=0.20(0.39) fb-!' and 6B=20% (x ~25) !!

This effect is less dramatic for the Log-prior case
due to the potentially heavier & possibly compressed

mass spectrum



Search ‘effectiveness’: If a model is found by only 1

analysis which one is it??

Analysis || Flat Lo, | Flat £, | Flat £, | Log Ly, | Log £ | Log Ly
4301 71.037 63.533 J 59.18 75.676 | 63.433 | 41.615
3701 1.154 11.493 18.689 1.3514 11.94 21.118
2701 26.206 13.799 | 4.4262 20.27 15.672 | 12.422
4311 0.30454 | 4.6116 | 6.5574 0 59701 | 7.4534
3711 0.096169 | 0.81589 | 0.98361 0 0 0.62112
2711 0.080141 | 1.8801 4.0984 0 0 6.2112

470SDL || 0.048085 0 0 0 0.74627 0

3JOSDL || 0.032056 | 1.6318 | 0.32787 0 0 0.62112

2]OSDL || 0.99375 | 1.6673 | 0.4918 1.3514 1.4925 | 1.8634

21SSDL || 0.048085 | 0.56758 | 5.2459 1.3514 | 0.74627 | 8.0745

oB=20%

4j0l is the most powerful analysis...




The Undiscovered SUSY

Why Do Models Get Missed by ATLAS?

The most obvious things to look at first are :

« small signal rates due to suppressed c’s

which can be correlated with large sparticle masses
» small mass splittings w/ the LSP (compressed spectra)
» decay chains ending in stable charged sparticles




i)

Oy Gz VS gluino mass and lightest squark mass

o’s : Squark & gluino production
cross sections @ 7 TeV cover a
] very wide range & are correlated
with the search significance. But
" there are models with ¢ ~30 pb
W 1 that are missed by all ATLAS
10 analyses while others with o below
| R L ~100 fb are found.
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Average light squark mass (GeV)

Gluino-LSP splitting (GeV)
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Soft jets & leptons
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Both 7 & 14 TeV models can

be missed due to small mass
splittings between squarks and/or
gluinos and the LSP — softer jets
or leptons not passing cuts. ISR
helps in some cases...
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For small mass splittings w/ the LSP a smaller fraction
of events will pass analysis cuts

efficimacy s wa=LtF for pass mocels

# of evts passing cuts e
total generated ey L L

s | : ”;:-“-;;{:f-éé'":fi{{ T

i D
Red=squark palrs s | P R T T T L LT
Green=gluino pairs el R __““:‘"_ T
But as seenon the | -8 N - 4j0I
previous slide tiny 24 SRR ST

efficiencies can be . &

compensated for by e o s i 70 o
huge c’s ! Mass Splitting with the LSP

anl



Missed vs Found Model Comparisons
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« 38036 (~2.5 pb) fails while 47772 (~1.7 pb) passes all nj0l

* Ug, lighter (~500 vs ~635 GeV) & produces larger ¢ in 38036

& decays ~75% to j+MET

« BUT due to the Am w/ LSP difference (— eff ~13% vs ~3.5% )
38036 fails to have a large enough rate after cuts

Efficiencies win over cross sections !



Missed vs Found Model Comparisons
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What went wrong ?7?

21089 (o ~ 4.6pb) & 34847 (o ~ 3.3pb) yet both models fail
njOl due to smallish Am’s. BUT 34847 is seen in the lower
background channels (3,4)j1l

In 34847, ug cascades to the LSP via y,° & the chargino
producing leptons via W emission. The LSP is mostly a wino
in this case.

In 21089, however, ugr can only decay to the lighter ~Higgsino
triplet which is sufficiently degenerate as be incapable of
producing high p; leptons

Note that the jets in both u; decays have similar p’s



Missed vs Found Model Comparisons
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What went wrong ?7?

* 8944 seen in (3,4)OSDL while 21089 is completely missed
njOl fail due to spectrum compression but with very similar
colored sparticle total ¢ = (3.4, 4.6) pb

 models have similar gaugino sectors w/ x, ,° Higgsino-like
& x3° bino-like

* x3° can decay thru sleptons to produce OSDL + MET

* However in 8944, the gluino is heavier than d; so that di
can decay to y3°

« But in 21089, the gluino is lighter than u; so that it decays
into the gluino & not the bino so NO leptons
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What went wrong ?7?

« 9781 seen in 2]SSDL while 20875 is completely missed
njOl fail due to spectrum compression but with very similar
colored sparticle total ¢ = (1.1, 1.3) pb

* Both models have highly mixed neutralinos & charginos w/
a relatively compressed spectrum

 In model 9781, ug can decay to leptons+MET via the bino
part of x,° via intermediate e, sleptons

e Butin 20875, these sleptons are too heavy to allow for decay
on-shell & only staus are accessible. The resulting leptons
from the taus are too soft to pass analysis cuts
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What went wrong ??
68329 passes 4j0l (c~4.6 pb) while 10959 (c~6.0 pb) fails all

In 68329, di decays to jJ+MET (B~95%) since the gluino is
only ~3 GeV lighter. The gluino decays to the LSP via the
sbottom (B~100%) with a Am~150 GeV mass splitting . The
LSP is bino-like in this model

In 10959, d; decays via the ~107 GeV lighter gluino (B~99%)
and the gluino decays (with Am ~40 GeV) through sbottom
& 2nd neutralino to the (wino-like) LSP (with Am~ 60 GeV).

Raising the LSP & b, masses in 68239 by 50 GeV (the 2nd
set of curves) induces failure due to the new gluino decay
path



A 14 TeV Example:

M (GeV) M (GeV)

M (C PP ue |
E"“ 5@ e @ ;::@:[
G0 % G0

TR TR

Missed 53170

43704 ound

Failed model 43704 process-partonicXS-fullXS-frac.diff) Sister model 63170 P
b2 591.6537 52.671 0.0705342 b2 554.1683 98.2279\, -0.0736501
63 919.5316 1007.283 | -0.0871171 b3 1136.412 1115.883 0.0183972
68 1689.407 2207.448 -0.234679 b3 1574.955 2111.774 -0.254203
69 4117.824 4553 5/ -0.0966714 b9 4469.741 b8.156/ -0.0818411

ES———

#lut Jeptenpt num-leps _MET hardasjet = MeHd =~ Meff-3  Meff-2 Sum-djet-pt Sum-3jet-pt Sum-Jjet-pt

13704/4650313 Y0.3305726 (114.8049 X424.9652 \1070.408 \ 996.6819 850.0967 8932752 8195494 6819642

63170\ 745432 /03209754 \ 200.8012 X368.0755 \ 1090669/ 1005495 867.3606 819.9918 734.8182 5966838
T — T — T — T ——




What went wrong ?7?

In 43704: gluinos— d; —y,° >W + ‘stable’ chargino (~100%)
(Zanesville, OH)as the x,° —LSP mass splitting is ~91 GeV

In 63170: gluinos— uz —y,Y — Z/h + LSP (~30%) as the
(St. Louis, MO) 4.0 - SP mass splitting is larger ~198 GeV

« Again: a small spectrum change can have a large effect on
the signal observability!

 — Searches for stable charged particles in complex cascades
may fill in some gaps as they are common in our model
sets



— Mostly long-lived charginos produced in long decay chains

Number

‘Stable’ Charged Particles in Cascades

~84% of these x,* with ct>20m have cB>10fb @ 7 TeV
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Impact of Higgs Searches

Searches for the various components of the SUSY Higgs
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sector also can lead
to very important
constraints on SUSY
parameter space.

So far with ~35 pb-'
these searches have
excluded only 4 of our
models (due to the
existing strong flavor
constraints) but these
searches are just
beginning ..



fraction of our FLAT model set

How often do these
‘famous’ decay chains
occur in ourmodel set??

Fraction of FLAT prior models has X,*->[+X, °
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Summary & Conclusions

* ATLAS searches at both 7 &14 TeV (& any value in between)
with ~10 fb-! will do quite well at ‘discovering’ most of the Flat
pPMSSM models & not at all badly with the Log prior set

» With ~35 pb1, a reasonable fraction of this model space has
already been ‘covered’ !

* Reducing SM background uncertainties is crucial to enhancing
model coverage..

* Models ‘missed’ primarily due to either compressed spectra or
because of low MET cascades ending in ‘stable’ charginos or...

« Small spectrum changes CAN be very important !



Numnber of Models
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As the background uncertainty
grows, harder M cuts are
needed to achieve maximum
model significance in all of the
various search channels.

Note that the M cut is less
important for final states with
fewer jets. This persists even in
analyses with Idftons.
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