A_{fb}/A_{c} and A vs M_{tt} in tt Pair Production

The CDF-II Collaboration

including

U Michigan: G. Strycker, M. Tecchio, A. Eppig, D. Amidei UC Davis: T. Schwarz, R. Erbacher, J. Conway Universitat Karlsruhe: J. Wagner, T.Chwalek, W. Wagner

Single Particle Asymmetries

- Forward-backward asymmetry A_{FB}
 - chiral color (axigluons)
 - Z'
- Charge asymmetry A_C
 - Net top current
 - 5 ±1.5% from NLO QCD
- If CP is good $A_C = A_{FR}$

$$A_{FB} = \frac{N_t(y > 0) - N_t(y < 0)}{N_t(y > 0) + N_t(y < 0)}$$

$$A_{c} = \frac{N_{t}(y > 0) - N_{\bar{t}}(y > 0)}{N_{t}(y > 0) + N_{\bar{t}}(y > 0)}$$

Two Particle Asymmetry

- Rapidity difference
 - equivalent to tt rest frame

$$\Delta Y = Y_t - Y_{\overline{t}}$$

$$A_{\Delta Y} = \frac{N(\Delta Y > 0) - N(\Delta Y < 0)}{N(\Delta Y > 0) + N(\Delta Y < 0)}$$

Data Sample

- $L = 3.2 \text{ fb}^{-1}$
- $e/\mu E_t/p_t > 20 \text{ GeV/c}, |n| < 1.0$
- MET > 20 GeV
- 4 jets Et > 20 GeV/c, |n|<2.0
- >= 1 btag
- 776 events
- Backgrounds
 - W+jets w/h.f. or "mis"tag
 - +QCD + small EWK
 - 167.5 ± 41.8 events
- 608 tt events. S:N ~4:1
- for $\sigma_{\text{eff}} \sim 7.2 \text{ pb}$

Process	
W+HF Jets	86.56 ± 27.40
Mistags (W+LF)	27.43 ± 7.70
Non-W (QCD)	33.44 ± 28.06
Single Top	7.82 ± 0.50
WW/WZ/ZZ	7.57 ± 0.74
Z+Jets	4.78 ± 0.59
Тор	569.08 ± 78.81
Total Prediction	736.64 ± 89.22

Top Reconstruction

- Jet-parton assignment via χ²
 - Constraints: $M_W = 80.4 \text{ GeV/c}^2 (\text{n.b. } p_z v!)$, $M_t = 175 \text{ GeV/c}^2$, btag = b
 - Float jet p_t within errors

Rapidity Variables

- each event has a leptonic and hadronic top decay
 - Q_l +: t_{lep} + $tbar_{had}$
 - Q_{l} : $tbar_{lep}$ + t_{had}
- this analysis: hadronic top in the lab frame
 - Y of t_{had}
 - charge of lepton from t_{lep}
 - use $-Q_1*Y(t_{had})$

The Top Rapidity Distribution (-Q*Y)

combined -Q*Y

$$A_{FB} = +9.8 \pm 3.6 \%$$

MC@NLO

$$A_{FB} = +1.9 \pm 0.7 \%$$

Subtract (somewhat asymmetric) Backgrounds

backgrounds reconstructed as top

Rapidity for >=4 Tight Jets + bTag Sample

Process	>=4 jets
W+HF Jets	-0.087±0.0052
Mistags (W+LF)	-0.044±0.0079
Non-W (QCD)	-0.017±0.036
Single Top	-0.16±0.012
WW/WZ/ZZ	0.1±0.032
Z+Jets	-0.01±0.014
Total Prediction	-0.059±0.0079

Unfold to the parton-level

- dN/dY : histogram
 - parton level bins j w/ contents Pj
 - data: in bins i w/ contents D_i
- then

-
$$D_i = M_{ij} \times \varepsilon_j \times P_j$$

- where
 - the ε_i are the acceptances for each bin
 - the M_{ii} are the bin-to-bin migration ratios
 - both measured with symmetric Pythia
- the inverse propagates data to parton level

$$- P_j = x ε_j^{-1} x M_{ji}^{-1} x D_i$$

result is optimized when nbins =4

bin	Y
1	-2.0 to -0.4
2	-0.4 to 0.0
3	0.0 to 0.4
4	0.4 to 2.0

Measurements

-Q*Y (pp frame) with 3.2 fb⁻¹

$$A_{FB} = 0.19 \pm 0.07 \pm 0.02$$

 ΔY (tt frame) with 1.9 fb⁻¹

$$A_{FB} = 0.24 \pm 0.13 \pm 0.04$$

D0 has measured

 ΔY (uncorrected) with 0.9 fb⁻¹

$$A_{FB} = 0.12 \pm 0.08 \pm 0.01$$

compare CDF \(\Delta \Y \) uncorrected

$$A_{FB} = 0.11 \pm 0.04$$

Hadronic Top Rapidity

The M_{tt} distribution Bridgeman, Liss (CDF)

- A proper unfold to parton level
 - "no evidence of departure from SM"

Mass Dependence of the Asymmetry M. Tecchio, T. Schwarz

unfold in M_{tt} and A_{fb}

for some mass cut

- reconstructed data divided into 4 exclusive bins
 - low mass FW
 - low mass BW
 - high mass FW
 - high mass BW
- backgrounds subtracted
- selection bias, reco slews corrected simultaneously in mass and Y with 2x2 unfold
- parton level A_{fb} for 2 mass bins "high and low"
- can study as function of cut

A_{fb} vs M unfold performance check

- add 10% contribution (0.7pb) of sequential Z' at 450 GeV
 - expected integral Afb ~ 2%
- In Afb low mass cut scan
 - sharp rise to 450
 - overshoot
 - settles back to integral
 - unfold works nicely
- In Afb high mass cut scan
 - starts above integral
 - asymptotes to Pythia symmetry as Z' contribution fades

What do we expect?

- in qq frame the NLO effect has a linear mass dependence
 - Almeida, Sterman, Vogelsang

Now Scan the Cut

- points: data
- dashed: Pythia reweighted with flat Acosθ asymmetry
 - A = 19%
 - no mass dependence
- green: "NLO model", Pythia reweighted with A_{FB} linearly dependent on M_{tt} as per fit to NLL calculation
- awaiting more data!

Now what?

A_{FB} in pp frame

$$A_{FB} = 0.19 \pm 0.07 \pm 0.02$$

- Procedure for study of mass dependence
- It's all 2σ
- more studies with more data
 - ΔY variable
 - understand systematics
 - A_{FB} vs M_{tt}
 - A_{FB} vs Y
 - asymmetries of decay products
- more data!!

Bonus Question

Highest Q² prior test of C in strong interactions ?

PHYSICAL REVIEW D

VOLUME 17, NUMBER 7

1 APRIL 1978

Test of charge-conjugation invariance in $\bar{p}p$ interactions

R. Cester, V. L. Fitch, R. W. Kadel,* R. C. Webb, J. D. Whittaker, and M. S. Witherell Department of Physics, Princeton University, Princeton. New Jersey 08540

M. May

Brookhaven National Laboratory, Upton, L.I., New York 11973 (Received 12 December 1977)

Using $\bar{p}p$ interactions at $\sqrt{s}=5.44$ GeV we have tested for evidence of C noninvariance through a comparison of the transverse-momentum distributions of particle and antiparticle produced at 90° in the center of mass. We found an average charge asymmetry for pions with p_1 between 0.5 and 2.7 GeV/c of $\Delta = (N_+ - N_-)/(N_+ + N_-) = 0.006 \pm 0.009$. This corresponds to a limit on the magnitude of the C-violating (relative to C-conserving) amplitude of Re $\alpha \le 0.0045$.

- What's the rub?
 - jets: don't know the charge
 - proton collisions: don't know the initial state
- $q\overline{q} \rightarrow t\overline{t}$ at the Tevatron is ideal