
 A Parton Shower
built for Matching
with QCD Matrix

Elements

M. E. Peskin
MC4BSM 09
April 2009

The problem of matching of parton showers to QCD matrix
elements is a very important one for LHC physics.

It is not possible to obtain reliable predictions for BSM
background processes such as W + jets and tt + jets from
parton shower Monte Carlos alone.

Peter Skands has introduced the idea of matching in some
detail. In this talk, I will describe some progress in my
approach to this subject. So far, my method gives a
working code only for the simplest case, the final-state
shower in .h0 → ng

There are two basic approaches to matching:

 Additive:

Use matrix elements in a particular (hard scattering) region of
phase space; use parton showers in the rest of phase space.

e.g. method of CKKW (Catani-Krauss-Kuhn-Webber):
 use matrix elements when partons momentum transfers are
greater than ; use parton showers when the momentum
transfers are less.

 Multiplicative:

Use partons showers in all of phase space, but reweight events
to take matrix elements into account.

Q2
0

All of the codes actually used now by experimenters to
analyze data are of the additive type:

 W, Z, t + jets, with matrix elements up to 4-jet emission

 ALPGEN, MADEVENT, SHERPA, HELAC

 (see the talk of F. Maltoni)

 correction of parton showers to incorporate exact 1-loop
 calculations

 MC@NLO Frixione, Webber, Nason
 POWHEG Frixione, Nason, Oleari

Any codes matched to PYTHIA or HERWIG are necessarily
additive, because these showers do not cover all of phase
space.

For concreteness, concentrate on the simplest case:

 the shower in

Begin by writing -- using QCD tree amplitudes only:

After the 2 gluon term, all contributions to the sum are infinite.

This is corrected by inclusion of loop amplitudes. These combine
with tree amplitudes to cancel infrared divergences. The finite
terms left over give corrections (e.g. ‘K-factors’).

However, QCD loop amplitudes are difficult to compute and, in a
Monte Carlo, expensive to evaluate.

h0 → ng

h0 → ng

O(αs)

Prob(n) =
∫

dΠn|M(h→ ng)|2

A parton shower deals with this in the following way:

Let be an ordering variable among the parton emissions, e.g.
 (‘virtuality ordering’).
Each emission is assigned a definite value of .

Then let

for one emission. This is the Sudakov integral. The probability
that there is no emission between and is

Including these probabilities or Sudakov factors, the total
probability of a Higgs decay becomes

With appropriate choice of ,

t
t = log(m2

h/sij), sij = (ki + kj)2
t

S(tn, tn+1) =
∫ tn+1

tn

dΠ |m(→ g)|2

tn tn+1

exp[−S(tn, tn+1)]

∑

n

Prob(n) = 1S(ti, ti+1)

Prob(n) =
∫

dΠn|M(h→ ng)|2
∏

i

e−S(ti,ti+1)

This method incorporates the most important effects of loop
diagrams, though it does not capture the K-factors and other
finite radiative corrections.

In a parton shower, the full emission amplitude is taken to
factorize by stages. At each stage, one takes the emission
amplitude to be the Altarelli-Parisi splitting function. This is
correct in the collinear limit (only).

My goal here is to apply a formula

where is the exact QCD tree amplitude to as high
a level as my computer has the strength to compute it.

[Caution: Here, ‘exact’ = leading order in only.]

Prob(n) =
∫

dΠn|M(h→ ng)|2
∏

i

e−S(ti,ti+1)

M(h→ ng)

Nc

Bauer, Tackmann, and Thaler have emphasized that, to use the
multiplicative method, it is necessary for the parton shower to
exactly cover phase space. Here is my solution to this problem.
To be most effective, I should preferentially generate points in
phase space in the soft and collinear regions.

An effective trick has been introduced by Draggiotis, van
Hameren, and Kleiss as the basis of their SARGE algorithm

Start with two back-to-back lightlike vectors. Add a third
lightlike vector

Then boost and rescale to the original CM frame and energy.

p3 = ξ1p1 + ξ2p2 + p⊥

To add the fourth vector, pick two neighbors, boost these
back-to-back, add a vector as before, and then boost the
entire system back to the CM frame.

Effectively, the entire event recoils when a new vector is
added.

The logarthmic integral over the parameters reproduces massless
phase space

Applying this operation repeatedly, we build up phase space with
all of the QCD denominators for emission of final-state radiation
that are found in the exact, leading- amplitudes.

∫
d3p3

(2π)22p3

2p1 · p2

2p1 · p3 2p3 · p2
=

1
(4π)2

∫
dξ1

ξ1

∫
dξ2

ξ2

∫
dφ

2π

∫
dΠn

1
2p1 · p2 2p2 · p3 · · · 2pn · p1

=
1

8πQ4

∏

i

[
1

(4π)2

∫
dξ1i

ξ1i

∫
dξ2i

ξ2i

∫
dφ

2π

]

Nc

This is an exact formula for massless phase space with QCD
denominators, but only if we integrate over every point in
phase space exactly once.

Draggiotis, van Hameren, and Kleiss suggested adding the
vectors 1, 2, 3 in fixed (color) order. This requires very large
values for the to reproduce some phase space
configurations.

An alternative approach is to choose arbitrarily at each step
one interval in which to insert a new vector. We call the set of
such choices a chamber. It is then necessary to define the
limits of each chamber so that the full set of chambers tiles
phase space.

ξi

Here is a useful definition of a chamber:

Let the nth vector be inserted between 1 and 2. Then allow
all values of such that

 is the smallest invariant mass of two neighbors,
 and

Reversing the inequality defines a
second chamber in which n is radiated
on the left side of 1.

These prescriptions put reasonable
upper limits on the integrals.

The ordering of virtualities is
similar to the ordering in a parton shower. In fact, we can
identify with the evolution variable of a parton shower.

s1n

sn2 < s13

s1n
sn2

s31

sij

ξ1j

ξ1, ξ2, φ

sij

Here is the proof that this method tiles phase space:

Just go backward. For an n-gluon configuration,

pick the smallest to be the emission chamber, and choose
the smaller of the on the two sides to complete the dipole.
Proceding in this way, each point in phase space gives a unique
path back to the 2-gluon state.

s1n
sn2

s31

si,i+1
si,i+1

s1n
sn2

s31

We can look at the emission in the chamber

between 1 and 2, on the side of 1

as an emission from the gluon 1
in the antenna (in the sense of Skands,
Weinzierl, et al.) of gluons 1 and 2.

At each stage in the shower, I choose an antenna and
an emission side at random.

The correspondence to Altarelli-Parisi is

and

(1− z) =
1

(1 + ξ1 + ξ2)
∫

dξ2

ξ2

∫
dξ1

ξ1
≈

∫
dQ2

Q2

∫
dz

z(1− z)

So, using the SARGE meaure and choosing all weights = 1
corresponds to the formula

with

This is very convenient, because it is an exact result in QCD that

In addition, each antenna automatically has color-coherence it its
emission

This is the more correct expression of the physics implemented in
PYTHIA and HERWIG by angular ordering.

Prob(n) =
∫

dΠn|M(h→ ng)|2
∏

i

e−S(ti,ti+1)

|M(h→ ng)|2 =
m8

h

s12s23 · · · sn1

M(h → g+
1 g+

2 · · · g+
n) =

m4
h

〈12〉〈23〉 · · · 〈n1〉

∫
dΠ

1
s12s23

Dixon, Glover,
Khoze

For a simple parton shower, I choose for the numerators of the
splitting functions:

for respectively. Note that, in the
last of these functions, the numerator cancels the collinear
singularity.

We could also use more complicated weights. In particular, the
prescription

reweights the emissions to the probabilities given by exact tree-
level matrix elements. We can use this prescription as long as
our computer has the strength to compute the matrix elements.

w =
|M(h→ ng)|2/|M(h→ (n− 1)g)|2

(2p1 · p2)/(2p1 · pn)(2pn · p2)

1 ,
1

(1 + ξ1 + ξ2)4
,

ξ4
1

(1 + ξ1 + ξ2)4
,

ξ4
2

(1 + ξ1 + ξ2)4

+→ (++,−+,+−,−−)

To generate QCD tree amplitudes, I use the Britto-Cachazo-Feng
recursion formula for on-shell, color-ordered amplitudes:

The BCF formula recursively breaks amplitudes down (numerically,
on the fly) to the simpler exact results for and
 all + or all - gluons.

iM(1 · · ·n) =
∑

splits

iM(b + 1 · · · î · · · a− 1 − Q̂)

· 1
sa···b

· iM(a · · · ĵ · · · b Q̂)

h0 → 2g, 3g,
h0 →

Now look at some results from the simulation:

All results refer to a Higgs of mass 1000 GeV, showered to an
infrared cutoff scale of 2 GeV. Since we are doing shower
physics, not Higgs physics, I use the effective interaction

without apology.

First, the simple shower without matching. This runs at

 4 events / msec

on my MacBook.

δL =
αs

12πv
h FµνFµν

VINCIA

Now add matching to matrix elements.

There is a small problem here. For the PYTHIA rejection
algorithm to work properly, we must choose g(t) to bound all
possible weights. But, large weights can appear !

One large weight W means that typical branches are selected
with probability 1/W . This dramatically slows the process.

In the formula

 never gets bigger than about 1.5. However, some A’s are very
small, and, in a series of emissions, a large A can follow a small A.
This leads to large weights .

The problem occurs because the chamber prescription above
sometimes emits a high-energy gluon between two lower-energy
gluons.

A better prescription is:
This also tiles phase space precisely.

|A|2

|An/An−1|2

z1 < z3 or (s12 + s14) < (s32 + s34)

M =
Am4

h

〈12〉〈23〉 · · · 〈n1〉

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

-5 -4 -3 -2 -1 0 1 2 3 4

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

-5 -4 -3 -2 -1 0 1 2 3 4

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

-5 -4 -3 -2 -1 0 1 2 3 4

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

-5 -4 -3 -2 -1 0 1 2 3 4

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

-5 -4 -3 -2 -1 0 1 2 3 4

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

-5 -4 -3 -2 -1 0 1 2 3 4

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

-5 -4 -3 -2 -1 0 1 2 3 4

With this change, here is the speed of event generation
 (msec/event)

pure shower: 0.42

 matching to 4 gluons 6 gluons 8 gluons

 2.1 6.4 78.

 Here are some results of these simulations.

 0.001

 0.01

 0.1

 1

 10

 0 0.1 0.2 0.3 0.4 0.5

 (1-thrust)

 0.001

 0.01

 0.1

 1

 10

 0 0.1 0.2 0.3 0.4 0.5

 (1-thrust)

 0.001

 0.01

 0.1

 1

 10

 0 0.1 0.2 0.3 0.4 0.5

 (1-thrust)

 0.001

 0.01

 0.1

 1

 10

 0 0.1 0.2 0.3 0.4 0.5

 (1-thrust)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

 f
ra

c
ti
o
n

 y_cut

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

 f
ra

c
ti
o
n

 y_cut

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

 f
ra

c
ti
o
n

 y_cut

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

 f
ra

c
ti
o
n

 y_cut

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

 f
ra

c
ti
o
n

 y_cut

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

 f
ra

c
ti
o
n

 y_cut

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

 f
ra

c
ti
o
n

 y_cut

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

 f
ra

c
ti
o
n

 y_cut

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

 f
ra

c
ti
o
n

 y_cut

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

 f
ra

c
ti
o
n

 y_cut

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

 f
ra

c
ti
o
n

 y_cut

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

 f
ra

c
ti
o
n

 y_cut

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

 f
ra

c
ti
o
n

 y_cut

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

 f
ra

c
ti
o
n

 y_cut

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

 f
ra

c
ti
o
n

 y_cut

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

 f
ra

c
ti
o
n

 y_cut

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

 f
ra

c
ti
o
n

 y_cut

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

 f
ra

c
ti
o
n

 y_cut

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

 f
ra

c
ti
o
n

 y_cut

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

 f
ra

c
ti
o
n

 y_cut

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 100 200 300 400 500

 E(i) i = 1,2,3 after clustering to 3 jets

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 100 200 300 400 500

 E(i) i = 1,2,3 after clustering to 3 jets

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 100 200 300 400 500

 E(i) i = 1,2,3 after clustering to 3 jets

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 100 200 300 400 500

 E(i) i = 1,2,3 after clustering to 3 jets

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 100 200 300 400 500

 E(i) i = 1,2,3 after clustering to 3 jets

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 100 200 300 400 500

 E(i) i = 1,2,3 after clustering to 3 jets

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 100 200 300 400 500

 E(i) i = 1,2,3 after clustering to 3 jets

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 100 200 300 400 500

 E(i) i = 1,2,3 after clustering to 3 jets

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 100 200 300 400 500

 E(i) i = 1,2,3 after clustering to 3 jets

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 100 200 300 400 500

 E(i) i = 1,2,3 after clustering to 3 jets

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 100 200 300 400 500

 E(i) i = 1,2,3 after clustering to 3 jets

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 100 200 300 400 500

 E(i) i = 1,2,3 after clustering to 3 jets

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

 100

 1000

 10000

 0 100 200 300 400 500

 E(i) i = 1,2,3,4,5 with ycut = 0.0001

(detail of the previous plot)

Conclusions:

This is a proof of principle for a new way to incorporate exact
matrix elements into a parton shower. Only the simplest
situation has been implemented so far.

The method generalizes to processes with massive particles in
the final state and to processes with initial state radiation.
However, these generators are not yet running (so you should
still be skeptical).

Still, there is promise that this method might develop into an
interesting tool for modeling multijet QCD processes.

