# Searches with Missing $E_T$ at the LHC

Meenakshi Narain Brown University April 1st, 2009

at LHC Workshop

UC Davis



### Acknowledgements, and References

- Work presented here is derived/taken from
  - ▶ ATLAS, CMS TDRs, analysis & conference notes and presentations
- Thanks!
- ▶ ATLAS Physics TDR: CERN/LHCC 1999-14/15
- ► CSC book: Expected Performance of the ATLAS Experiment Detector, Trigger and Physics CERN-OPEN-2008-020, Geneva, 2008
- ▶ CMS PTDR II CERN/LHCC 2006-021
- Data driven estimation of invisible Z background in the SUSY MET plus jets search CMS PAS SUS-08-002
- ▶ SUSY searches with di-jet events CMS PAS SUS-08-005
- CMS search plans and sensitivity to new physics using dijets CMS PAS SBM-07-001
- http://arxiv.org/abs/0805.2398 Hubisz et al

# Models with Missing Energy Signatures

- Many New Physics Models provide signatures with Missing Energy in the final state
  - R-parity conserving Supersymmetry
    - minimal super gravity mSugra (neutralino)
    - Gauge mediated SUSY (gravitino)
  - Universal Extra Dimensions
  - Warped Extra Dimensions
  - Little Higgs Models
  - Technicolor Models
  - plus more.... (and probably more can be made available...)
- Production of WIMP's in cascade decays of heavy new particles
  - WIMP's escape the detector and remain undetected
  - Leads to a missing energy signature

### Sources

- ▶  $E_{Tmiss}$  from neutrinos: from the direct decay of new heavy particles to neutrinos, or decays of new heavy particles to top, W's, Z's, or  $\gamma$ 's.
  - look for anomalies in the energetic tails of data sets with reconstructed top, W's or Z's.
- ▶ E<sub>Tmiss</sub> originates from a single weakly interacting exotic particle in the final state.
  - graviton production in models with large extra dimensions leading to monojets+large  $E_{tmiss}$  in case of strong production.
- ▶ E<sub>Tmiss</sub> originates from many weakly interacting exotic particles in the final state.
  - Hidden valley models (light pions of the hidden sector)

# Missing ET signatures: An Example from SUSY

- ▶ E<sub>Tmiss</sub> originates from two weakly interacting exotic particles in the final state
  - SUSY with R-parity conserved
  - e.g. gluino pair-production
- lots of missing energy, many jets, and possibly leptons in the final state



#### Missing Energy:

• from LSP

#### Multi-Jet:

• from cascade decay (gaugino)

#### **Multi-Leptons:**

 from decay of charginos and neutralinos

# Missing $E_T$ signatures: ...in more general scenario

pair production of new heavy particles



#### Missing Energy:

• Nwimp - end of the cascade

#### Multi-Jet:

 from decay of the Ns (possibly via heavy SM particles like top, W/Z)

#### Multi-Leptons:

• from decay of the N's

Model examples are Extra dimensions, Little Higgs, Technicolour, etc

# Searches using Missing Energy

- Most of the signatures which have missing energy in the final state have been studied in the context of SUSY searches.
- ▶ However, the procedures for determination of SM backgrounds for these searches are applicable to other similar searches as well.
- Before claiming SUSY/other discovery need to understand SM at LHC with high precision
- If excess beyond SM is observed, then still much work needed to determine underlying model (SUSY or others)
- ▶ Typical analysis based on final state lepton and jet multiplicity
  - ▶ More leptons  $\rightarrow$  less signal but better S/B

### Signatures:

▶ Analyses designed by number of leptons and or jets in the final state. In the table ✓ means covered by CMS/ATLAS

|                  | 1 jet | 2 jet | 3 jets   | 4 jets |
|------------------|-------|-------|----------|--------|
| 0 lepton         |       | ✓     | <b>√</b> | ✓      |
| 1 lepton         |       | ✓     | ✓        | ✓      |
| 2 lepton SS / OS |       | ✓     | ✓        | ✓      |
| 3 leptons        | ✓     |       |          |        |
| taus             |       | ✓     | ✓        | ✓      |
| b's              |       | ✓     | ✓        | ✓      |

- Dominant backgrounds are
  - W+jets, top pair production,  $Z \rightarrow vv+jets$ ,  $Z\rightarrow II+jets$ , QCD multijet

### Definition of some Observables

#### **ATLAS:**

$$M_{eff} = \sum_{i=1}^{N} p_T^{jet,i} + \sum_{i=1}^{N} p_T^{lep,i} + \cancel{E}_T$$
 4 highest  $p_T$  jets in  $|\eta| < 2.5$ 

$$S_T = \frac{2\lambda_2}{(\lambda_1 + \lambda_2)} \text{ with } \lambda_1 \lambda_2 \text{ eigenvalues of } S_{ij} = \sum_k p_{ki} p^{kj}$$
 all jets with  $p_T > 20 \text{ GeV}$  and leptons in  $|\eta| < 2.5$ 

$$m_{T2}^2 \equiv \min_{\mathbf{q}_T^{(1)} + \mathbf{q}_T^{(2)} = E_T} \left[ \max \left\{ m_T^2(\mathbf{p}_T^{\alpha}, \mathbf{q}_T^{(1)}; m_{\alpha}, m_{\chi}), \ m_T^2(\mathbf{p}_T^{\beta}, \mathbf{q}_T^{(2)}; m_{\beta}, m_{\chi}) \right\} \right]$$

- C. Lester, D. Summers, Phys. Lett. B463 (1999) 99
- A. Barr, C. Lester, P. Stephens, J. Phys. G. 29 (2003) 2343

#### ► CMS:

$$H_{\rm T} \equiv E_{\rm T(2)} + E_{\rm T(3)} + E_{\rm T(4)} + E_{\rm T}^{\rm miss}$$

 $\blacktriangleright$  Where 2, 3, 4 index selected jets sorted by PT

One Lepton + jets + Missing Energy

### One lepton mode SUSY:



### **Dominant backgrounds:**

| sample   | x-sec (pb)        |
|----------|-------------------|
| top pair | 833               |
| W+jets   | 10 -10000         |
| QCD      | 10000 -1000000000 |
| Z+jets   | 10 -1000          |
| SUSY     | 5 -300            |

### SUSY event selection:

 $1 j et p_T > 100 GeV$   $4 j et s p_T > 50 GeV$   $lepton p_T > 20 GeV$   $2nd \ lepton veto$  $E_T > 100 GeV$ 



### Background Estimation

#### Problem:

- no clean SM measurement possible if SUSY exists
- ▶ SM shape at high missing ET unknown & MC possibly unreliable
- → data-driven estimation

### ▶ Control region:

- dominated by SM + small contamination SUSY
- ▶ Signal region:
  - dominated by SUSY + small SM background

### Background Estimation

### Problem:

- no clean SM measurement possible if SUSY exists
- ▶ SM shape at high missing ET unknown & MC possibly unreliable

#### → data-driven estimation

- Observables helpful in removing Wjets, ttbar background
  - $M_T$  = transverse mass mass missing  $E_T$ +lepton
  - (needed to distinguish W+jets background)
  - $M_{top}$  = invariant mass of 3 jet system with highest sum  $p_T$
  - (needed to distinguish ttbar background)



# Method 1: W+jets, ttbar backgrounds

- Analyse data in an L-shaped region at both:
  - ▶ low missing E<sub>T</sub> in full MT-range
  - low M<sub>T</sub> in full missing ET-range
  - (both regions practically SUSYfree from kinematic considerations)
- Perform a 2D extrapolation into the SUSY signal region (high missing  $E_T$ ,  $M_T$ )
- Explicitly account for SUSY contamination in control region



missing E<sub>T</sub>

# Method 1: W+jets, ttbar backgrounds

- Combined fit method:
  - Construct a 3D model for each background
  - Build combined model by simple addition
  - Separate three distinct components of background by fitting combined model to data



- Empirical models taking physics features into account:
  - 1) Top mass peak
  - 2) Jacobian W-peak in M<sub>T</sub>
  - 3) Dileptonic ttbar different from semileptonic

# Method 1: accounting for SUSY in bkg

- ▶ Different SUSY models look surprisingly similar in control region
- ▶ SUSY contamination in control region determined by adding a generic Ansatz shape to the combined fit





 Almost no dependence on simulation as shape parameters are floated as well as yields of backgrounds

|                     |   | Extrapolated Yield in SIG | True Yield in SIG |
|---------------------|---|---------------------------|-------------------|
| $N_{tt11}$          | = | -1.1 ± 3.9                | 0                 |
| N <sub>tt2l</sub> : | = | 4.7 ± 7.9                 | 5                 |
| N <sub>wjets</sub>  | = | -1.2 ± 2.7                | 2                 |
|                     | = | 95.6 ± 4.0                | 91                |

### Method 2: HT2 method

Use HT2 (leading jet excluded) and missing ET significance as nearly independent variables

$$E_{\rm T}^{\rm miss}$$
 significance =  $E_{\rm T}^{\rm miss}$  /[0.49 ·  $\sqrt{\sum E_{\rm T}}$ ] HT2 =  $\sum_{i=2}^{4} p_T^{\rm jet} + p_T^{\rm lepton}$ 

- ▶ Define signal region as HT2 >300 GeV (control region HT2 < 300 GeV)
- ▶ Shape of missing ET significance is taken from control region
- ▶ This distribution is normalized to the number of events in signal region
- Subtract background estimation from measured distribution of missing ET significance



# Removing Dileptonic top background

- ▶ With an additional cut on M<sub>T</sub>>100 GeV dileptonic ttbar left as the main background component
  - How dileptonic ttbar passes veto on 2<sup>nd</sup> lepton:
    - 1 lepton is tau (51%)
    - 1 lepton misidentified (20%)
    - 1 lepton inside a jet (17%)
    - 1 lepton out of acceptance (9%)
    - both leptons are tau (3%)



# Dileptonic top background: Kinematic reconstruction method

- Define dileptonic top control sample:
  - 2 opposite charge leptons
  - N jets  $\geq$  3 (p<sub>T</sub> >50 GeV)
- Solve system of equations for every combination of jets:
  - If system has a real solution the jet-pair is considered a b-jet pair
  - Selecting N b-jetpair ≥ I enhances dileptonic ttbar in background
- Take background events and resimulate:
  - resimulate decay of one lepton as a tau
  - replace I lepton by jet (misidentified lepton)
  - estimate background from resimulated events





Jets + Missing Energy

(no lepton)

# Four Jets + Missing Energy



### SUSY event selection:

 $\begin{aligned} 1j\,et\,p_T &> 100\,GeV\\ 4j\,ets\,p_T &> 50\,GeV\\ E_T &> 100\,GeV\\ lep\,ton\,veto \end{aligned}$ 

 $\Delta \phi(E_T - j e t_i) > 0.2 \ (i = 1,2,3)$ 



Missing ET [GeV]

# Z+jets background using replace method

- ► Z→vv and associated jets is one of the main backgrounds
- ► Use Z→II+jets as control sample with standard selection and:
  - replace missing E<sub>T</sub> by pT (II)
  - ▶ 8I < M (II) < I0I GeV
  - missing E<sub>T</sub><30 GeV</p>



#### Corrections:

- Kinematic: additional cuts used
- Fiducial: good lepton detection only for  $|\eta| < 2.5$
- Lepton identification efficiency using tag-and-probe method



# Three jets + Missing Energy

- Potentially high QCD backgrounds
- ho LI:  $E_{
  m T}^{
  m miss}, L1 > 46\,{
  m GeV}$  ,  $E_{
  m T} > 88\,{
  m GeV}$  , HLT:  $E_{
  m T}^{
  m miss} > 200\,{
  m GeV}$
- Cuts:
  - > 3 jets:

$$E_{T,j(1)} > 180 \,\text{GeV} \quad |\eta_d^{1j}| < 1.7$$
  
 $E_{T,j(2)} > 110 \,\text{GeV} \quad |\eta| < 3$   
 $E_T > 30 \,\text{GeV} \quad |\eta| < 3$ 

 $E_{\rm T}^{\rm miss} > 200\,{\rm GeV}$ 

 $\delta \phi_{min}(E_{\mathrm{T}}^{\mathrm{miss}} - jet) \geqslant 0.3 \,\mathrm{rad}$ 

$$\delta\phi(E_{\rm T}^{\rm miss}-j(2))>20^{\circ}$$

No isol. tracks with pT > 15 GeV  $f_{em(j(1))}$ ,  $f_{em(j(2))} < 0.9$ 

$$H_{\rm T} > 500\,{\rm GeV}$$



Implicit lepton veto against tt, V+j

### **Background Estimation**

- ▶ Use the dataset  $Z(\rightarrow \mu\mu)$ + 2 jets for normalisation:
  - Estimate the  $Z(\rightarrow \nu \bar{\nu}) + \ge 3$  jets contribution from data:
  - Normalize using:

$$R = \frac{dN_{events}}{dN_{jets}} = \frac{\mathcal{L}d\sigma}{dN_{jets}}$$

- Ratio of  $Z(\to \mu\mu)$  to  $Z(\to \nu\bar{\nu})$
- ▶ Require Z boson  $P_T > 200 \, \text{GeV}$  in all samples
- ▶ Similarly, estimate  $W(\to \tau \nu) + \ge 2$  jets:
- Use:

$$\rho \equiv \frac{\sigma(pp \to W(\to \mu\nu) + jets)}{\sigma(pp \to Z(\to \mu^+\mu^-) + jets)}$$

- ▶ Needed data sample:
  - $\sim 1.5 \, {\rm fb}^{-1}$
- Estimate systematics due to raw  $E_{\rm T}^{\rm miss}$  from data



# di-jets + Missing Energy (M<sub>T2</sub> method)

▶ Using variable  $m_{T2}$  (large  $p_T$ ,  $E_T$  and  $\delta \phi$ ):

$$m_{T2}^2 \equiv \min_{\mathbf{q}_T^{(1)} + \mathbf{q}_T^{(2)} = E_T} \left[ \max \left\{ m_T^2(\mathbf{p}_T^{\alpha}, \mathbf{q}_T^{(1)}; m_{\alpha}, m_{\chi}), \ m_T^2(\mathbf{p}_T^{\beta}, \mathbf{q}_T^{(2)}; m_{\beta}, m_{\chi}) \right\} \right]$$

- ightharpoonup Trigger:  $E_T^{
  m jet} > 70\,{
  m GeV}$  and  $E_T > 70\,{
  m GeV}$
- ▶ Cuts:

2 jets in  $|\eta|$  < 2.5 :

$$j_1: P_T^{jet1} > 150 \text{ GeV}$$
 $j_2: P_T^{jet2} > 100 \text{ GeV}$ 
 $E_T > 100 \text{ GeV}$ 
 $m_{T2} > 400 \text{ GeV}$ 

No isolated leptons



# di-jets + Missing Energy (α method)

- ► CMS study: PAS-SUS-08/005
  - Based on: L. Randall, D.Tucker-Smith (Phys.Rev.Lett.101:221803,2008)
- ▶ Idea:
  - Squarks pair produced and directly decaying to quarks and neutralinos
- Event topology
  - Only two jets + missing energy
- ► Background:
  - QCD dijet events
    - No real missing momentum
  - $\rightarrow$  Z $\rightarrow$ vv events
    - Irreducible background due to real missing ET
  - $\rangle$   $V \rightarrow |V$ 
    - Leads to missing Et when lepton not reconstructed or out of acceptance





Transverse momentum conservation
Jets back-to-back in phi
E<sub>T</sub> of jets equal in magnitude
missing ET



iet

### Discriminating Variables

- Exploit kinematics of the event
  - $\triangleright$  Define variable  $\alpha$  (Randall Tucker-Smith):

$$\alpha = \frac{E_{T j2}}{M_{j1j2}} = \frac{E_{T j2}}{\sqrt{2E_1E_2(1-\cos\theta)}}$$

- $\triangleright$  Can be at most 0.5 for QCD,  $\alpha$  < 0.5
- $> \alpha > 0.5$  implies missing momentum
- $\triangleright$  And transverse  $\alpha_T$ :

$$\alpha_T = \frac{E_{T j2}}{M_{T j1 j2}} = \frac{\sqrt{E_{T j2}/E_{T j1}}}{\sqrt{2(1-\cos\Delta\varphi)}}$$

- > Exploits that for QCD jets need to be back-to-back and of equal magnitude
- $\succ$  For QCD dijets  $\alpha$  = 0.5

Analysis does not rely on calorimetric MET, MHT inferred from 2 jets

⇒ well suited for early data

### **Event Selection**

#### Main variables of interest

- $\rightarrow$   $\Delta \phi$  between the jets
- $\rightarrow \alpha (\alpha_T)$  from 2 leading jets
- $\triangleright$  Scalar sum of Jet  $p_{\tau}$ 's:

$$\rightarrow$$
 HT =  $p_T^{Jet1}$  +  $p_T^{Jet2}$ 

Jet based missing E<sub>T</sub>

$$\rightarrow$$
 MHT = - ( $p_T^{Jet1} + p_T^{Jet2}$ )

▶ but also p<sub>T</sub> of a possible 3<sup>rd</sup> jet



### Trigger

- di-jet trigger
  - two jets with pt > 150 GeV

#### Preselection:

- Jet Selection
  - ▶ 2 jets with pt > 50 GeV, Fem < 0.9</p>
  - ▶ 3rd jet veto: pt < 50 GeV</p>
  - $\Delta \varphi(MHT, jet 1, 2, 3) > 0.3 \text{ rad}$
  - |ηjI| < 2.5
    </p>
- Lepton veto's:
  - ▶ no e,  $\mu$  with pt >10 GeV

#### **▶** Full Selection

- HT > 500 GeV
- $\alpha (\alpha T) > 0.55$
- $\wedge$   $(\Delta \phi < 2\pi/3)$

### Discriminating Variables



# **Background Estimation**

An illustrative example:  $Z \rightarrow vv + jets$ Irreducible background for Jets+ $E_t^{mis}$  search

#### Data driven strategy:

• define control samples and understand their strength and weaknesses:



#### Strength:

- very clean, easy to select Weakness:
- low statistic: factor 6
   suppressed wrt. to Z →vv



#### Strength:

- larger statistic
- Weakness:
- not so clean, SM and signal contamination



#### Strength:

- large stat, clean for high  $E_{\gamma}$  Weakness:
- not clean for E<sub>v</sub><100 GeV,
- possible theo. issues for normalization (u. investigation)

# γ+jets: Estimate Z to invisible

#### γ+jets selection & properties:

- E,>150 GeV
- → clean sample: S/B>20
- $\rightarrow$  ratio  $\sigma(Z+jet)/\sigma(\gamma+jet)$  constant



#### γ+jets: Strategy:

- remove γ from the event:
  - $\to \gamma \text{ becomes } \textbf{E}_{\textbf{T}}^{\text{mis}}$
- take  $\sigma(Z+jet)/\sigma(\gamma+jet)$  for  $E_{\gamma}>200$  GeV from MC or measure in data



### Conclusions

- Discussed some examples of analyses for events with Missing E<sub>T</sub>.
- Data-driven backgrounds determinations have been developed
  - Exploit uncorrelated observables to predict backgrounds in signal region from control samples (HT2, Missing Energy Significance, M<sub>⊤</sub>)
  - Subtraction of all backgrounds using matrix method
  - Modeling of  $Z \rightarrow vv$  from  $Z \rightarrow II$  and from  $\gamma$  + jets
- Di-jet analysis exploiting particular event topology
  - Shown results do not rely on calorimetric MET
    - Useful for early running.
- Extension to a calorimetric MET independent multi-jet analyses under study
- ▶ Eagerly awaiting first collisions and discoveries in fall of this year.

