# **Normalizing VV at the LHC**

J.Campbell, E.Castaneda, Y.Fang, N.Kauer B.Mellado and Sau Lan Wu (Not an ATLAS talk)



Special thanks S.Dawson, J.Qian and D.Rebuzzi LMET Workshop, UC Davis, 04/01/09

### **Overview**

□ Introduction ☐ Relevance of VV at LHC □ Normalizing VV with Z<sup>(\*)</sup> ☐ Tools ☐ Inclusive rates **□ZZ** production **□ZW, WW production** ☐ Dependence on pp center of mass energy ☐ Jet veto survival probability **■ WW production □ ZW** production □ Outlook and conclusions

### VV at the LHC

- □ VV (V=Z,W) is a major contributor to NL+MET and a background for a number of searches ranging from Higgs searches to SUSY and models beyond the SM
  - ☐ Attractive NL+MET signatures with first data
  - **☐ WW** gives a large rate of 2L+MET
    - With a jet veto it becomes the leading background for H->WW searches
  - **□ ZW** gives 3L+MET
    - With a jet veto it becomes the leading background to gaugino production
  - □ ZZ is the leading 4L production mechanism
    - Gives MET when T present or instrumental MET

# Normalizing VV with Z<sup>(\*)</sup>

- □ Strong similarities of diagrams since dominant cross-section comes from qq->V(V) via EW couplings
- □ Ratios VV/V expected to reduce pdf and a significant portion of the scale uncertainty
  - □ This is an asset especially at the very beginning of data taking when global pdf fits will not be available

Prediction Theory Experimental efficiencies Observed 
$$N(VV) = \left(\frac{\sigma(pp \to VV)}{\sigma(pp \to Z^{(*)})}\right)_{Th} \cdot \epsilon(ll \to Nl) \cdot N_{Obs}(Z^{(*)})$$

Abdullin et al. in hep-ph/0604120 computed the ratio ZZ/Z to NLO

### **Tools**

- □ For qq->Z<sup>(\*)</sup> and qq->ZZ use MCFM v5.3 with bug fixes provided by John Campbell
  - ☐ Two independent analyses with independent MC samples. Cross-checks with Pythia
    - Foreseeing additional check with Sherpa
- □ For gg->ZZ use gg2ZZ. The numbers of the nominal cross-sections and the scale error uncertainties made by Nikolas Kauer
  - □ Evaluating with Pavel Nadolski (Resbos) and the K factor for gg->\gamma\gamma for M\_{gg}~M\_ZZ
    - Nikolas evaluating potential differences
- ☐ Studies with ALPGEN and MC@NLO

# Ratio ZZ(WW)/Z\*

- □ The production of ZZ and WW is enhanced by large contributions from gg->VV with gluons in the initial state
  - ☐ Formally a part of the NNLO contribution, but enhanced due to the large gluon flux



$$R = \frac{\sigma_{q\overline{q}\to ZZ}^{NLO} + \sigma_{gg\to ZZ}^{LO}}{\sigma_{q\overline{q}\to Z}^{NLO}}$$

# **Event selection & Settings**

- □ The analysis is done at the "parton level". The theoretical errors are decoupled from the experimental errors
- $\Box$  These studies are only for  $M_{zz}>2M_z$ 
  - $\Box$  Four (two) leptons with P<sub>T</sub>>20 GeV, |eta|<2.5
  - □ Requirement of 71<M<sub>II</sub><111 on lepton pairs
  - □ \DeltaR\_{II}>0.2 and \DeltaR\_{Ij}>0.7
  - ☐ EW settings as default in MCFM taken by gg2ZZ
  - □ Set scales to M\_V
    - We also have results with dynamic scales \mu=M\_{Z<sup>(\*)</sup>,ZZ}.

## **Nominal Values of ZZ/Z\***

- □ Ratios are constructed such that the invariant mass of Z(\*) and ZZ are in the same bin
  - □ Contribution from gg->ZZ increases sigma by ~13%
  - □ Ratio depends weakly with Mass (nice surprise!)
    - Need to understand better behavior at very large masses

| ф        |
|----------|
| <b>三</b> |
| NS       |
| tio      |
| eci      |
| S-S      |
| 386      |
| 7        |

| Mass Range | $\sigma^{NLO}_{q\overline{q} ightarrow Z^*}$ | $\sigma^{NLO}_{q\overline{q} ightarrow ZZ}$ | $\sigma^{LO}_{gg	o ZZ}$ | $\frac{\sigma_{ZZ}}{\sigma_{Z^*}} \times 10^3$ |
|------------|----------------------------------------------|---------------------------------------------|-------------------------|------------------------------------------------|
| 200 - 250  | 1773.7                                       | 7.99                                        | 1.182                   | 5.17                                           |
| 250 - 300  | 753.2                                        | 3.65                                        | 0.530                   | 5.54                                           |
| 300 - 350  | 372.4                                        | 1.86                                        | 0.246                   | 5.66                                           |
| 350 - 400  | 205.7                                        | 1.07                                        | 0.131                   | 5.83                                           |
| 400 - 450  | 121.0                                        | 0.64                                        | 0.082                   | 5.94                                           |
| 450 - 500  | 76.0                                         | 0.40                                        | 0.055                   | 6.01                                           |
| 500 - 750  | 143.9                                        | 0.74                                        | 0.114                   | 5.92                                           |
| 750 - 1000 | 27.4                                         | 0.16                                        | 0.033                   | 6.88                                           |

## Scale Errors of ZZ/Z\*

- ☐ Treat qq->ZZ and gg->ZZ independently
  - ☐ This somewhat overestimates error on factorization scale due to expected anti-correlation for qq and gg
  - ☐ Get maximum deviation by changing renormalization and factorization scales in opposite directions

Cross-sections in fb

Change scale by \*4, /4

| Mass Range | ass Range $\sigma^{NLO}_{qar q	o Z^*}$ $\sigma^{NLO}_{qar q	o ZZ}$ |       | $\sigma_{gg}^{Lo}$ | $\sigma^{LO}_{gg	o ZZ}$ |      | < 10 <sup>3</sup> |      |      |
|------------|--------------------------------------------------------------------|-------|--------------------|-------------------------|------|-------------------|------|------|
| 200 - 250  | 1858.8                                                             | 4.8   | 8.34               | 4.3                     | 1.92 | 62.0              | 5.52 | 6.6  |
|            | 1586.8                                                             | -10.5 | 7.14               | -10.6                   | 0.75 | -36.4             | 4.98 | -3.8 |
| 250 - 300  | 792.0                                                              | 5.2   | 3.86               | 5.9                     | 0.83 | 57.3              | 5.93 | 6.9  |
|            | 683.8                                                              | -9.2  | 3.32               | -9.0                    | 0.35 | -33.9             | 5.36 | -3.3 |
| 300 - 350  | 390.5                                                              | 4.9   | 1.94               | 4.2                     | 0.38 | 53.6              | 5.94 | 4.9  |
|            | 340.7                                                              | -8.5  | 1.70               | -8.5                    | 0.17 | -31.5             | 5.50 | -2.9 |
| 350 - 400  | 214.7                                                              | 4.4   | 1.10               | 3.3                     | 0.20 | 49.3              | 6.05 | 3.8  |
|            | 195.3                                                              | -5.0  | 0.96               | -10.0                   | 0.09 | -29.8             | 5.40 | -7.5 |
| 400 - 450  | 125.8                                                              | 4.0   | 0.67               | 5.8                     | 0.12 | 46.0              | 6.31 | 6.2  |
|            | 114.8                                                              | -5.1  | 0.60               | -6.4                    | 0.06 | -28.5             | 5.70 | -4.1 |
| 450 - 500  | 79.5                                                               | 4.5   | 0.43               | 6.5                     | 0.08 | 44.3              | 6.38 | 6.3  |
|            | 72.4                                                               | -4.8  | 0.38               | -6.0                    | 0.04 | -26.7             | 5.78 | -3.8 |
| 500 - 750  | 147.6                                                              | 2.6   | 0.78               | 5.9                     | 0.16 | 40.9              | 6.39 | 7.8  |
|            | 140.4                                                              | -2.5  | 0.70               | -4.8                    | 0.09 | -22.0             | 5.64 | -4.7 |
| 750 - 1000 | 28.1                                                               | 2.6   | 0.16               | 2.0                     | 0.04 | 30.1              | 7.17 | 4.2  |
|            | 28.2                                                               | 2.9   | 0.15               | -4.9                    | 0.03 | -17.8             | 6.21 | -9.8 |

# Scale Errors of ZZ/Z\*

### □ Multiply the contribution of gg->ZZ by a factor of 2 (potential QCD NLO K factor) but keep the relative errors at the LO level

| Mass Range | $igg  \sigma^{NL}_{qar q-}$ | $O \to Z^*$ | $\sigma_{\!q{\overline q}}^{N}$ | LO<br>i→ZZ | $\sigma_{gg}^{Lo}$ | $\stackrel{O}{\rightarrow}ZZ$ | $\frac{\sigma_{ZZ}}{\sigma_{Z^*}}$ | $\times 10^3$ |
|------------|-----------------------------|-------------|---------------------------------|------------|--------------------|-------------------------------|------------------------------------|---------------|
| 200 - 250  | 1858.8                      | 4.8         | 8.34                            | 4.3        | 3.83               | 62.0                          | 6.55                               | 12.1          |
|            | 1586.8                      | -10.5       | 7.14                            | -10.6      | 1.50               | -36.4                         | 5.45                               | -6.7          |
| 250 - 300  | 792.0                       | 5.2         | 3.86                            | 5.9        | 1.67               | 57.3                          | 6.98                               | 11.7          |
|            | 683.8                       | -9.2        | 3.32                            | -9.0       | 0.70               | -33.9                         | 5.88                               | -6.0          |
| 300 - 350  | 390.5                       | 4.9         | 1.94                            | 4.2        | 0.76               | 53.6                          | 6.91                               | 9.2           |
|            | 340.7                       | -8.5        | 1.70                            | -8.5       | 0.34               | -31.5                         | 5.99                               | -5.3          |
| 350 - 400  | 214.7                       | 4.4         | 1.10                            | 3.3        | 0.39               | 49.3                          | 6.97                               | 7.7           |
|            | 195.3                       | -5.0        | 0.96                            | -10.0      | 0.18               | -29.8                         | 5.87                               | -9.3          |
| 400 - 450  | 125.8                       | 4.0         | 0.67                            | 5.8        | 0.24               | 46.0                          | 7.26                               | 9.7           |
|            | 114.8                       | -5.1        | 0.60                            | -6.4       | 0.12               | -28.5                         | 6.22                               | -6.2          |
| 450 - 500  | 79.5                        | 4.5         | 0.43                            | 6.5        | 0.16               | 44.3                          | 7.37                               | 9.7           |
|            | 72.4                        | -4.8        | 0.38                            | -6.0       | 0.08               | -26.7                         | 6.33                               | -5.9          |
| 500 - 750  | 147.6                       | 2.6         | 0.78                            | 5.9        | 0.32               | 40.9                          | 7.47                               | 11.3          |
|            | 140.4                       | -2.5        | 0.70                            | -4.8       | 0.18               | -22.0                         | 6.27                               | -6.5          |
| 750 - 1000 | 28.1                        | 2.6         | 0.16                            | 2.0        | 0.08               | 30.1                          | 8.68                               | 7.5           |
|            | 28.2                        | 2.9         | 0.15                            | -4.9       | 0.05               | -17.8                         | 7.16                               | -11.3         |

**Cross-sections in fb** 

# Comments on gg->ZZ to NLO

- □ The QCD NLO corrections gg->ZZ are expected to be significant
  - We can get a feeling of the size by looking into high mass gg->\gamma\gamma. Work in progress to compare with the numbers of 2002

PHYSICAL REVIEW D 66, 074018 (2002)

TABLE I. NLO QCD K factors for  $\gamma\gamma$  Higgs signal and gluon fusion background. Both LO and NLO cross sections are computed using NLO parton distributions.

| $M_{\gamma\gamma}$ (GeV) | $K_{ m Higgs}$ | $K_{gg 	o \gamma\gamma}$ |
|--------------------------|----------------|--------------------------|
| 98                       | 2.92           | 1.82                     |
| 118                      | 2.54           | 1.61                     |
| 138                      | 2.39           | 1.55                     |

# \sqrt{s} Dependence

- □ The contribution off the gg->ZZ to the table is not added yet
- □ The Ratio ZZ/Z\* seems to be flat as a function of \sqrt{s} and different mass ranges
  - ☐ The ratio ZZ/Z is less flat

Table 4: Stability of the ratio  $\frac{\sigma_{q\bar{q}\to ZZ}^{NLO}}{\sigma_{q\bar{q}\to Z^*}^{NLO}} \times 10^3$  for different ranges of the invariant mass of the leptonic system (in gev) as a function of the p-p collision center of mass energy (in TeV).

| $\sqrt{s}$ | 200 - 250 | 250 - 300 | 300 - 500 | > 500 |
|------------|-----------|-----------|-----------|-------|
| 14         | 4.51      | 4.87      | 5.18      | 5.06  |
| 12         | 4.52      | 4.88      | 5.07      | 4.98  |
| 10         | 4.45      | 4.88      | 4.96      | 4.98  |
| 8          | 4.47      | 4.82      | 4.97      | 4.98  |
| 6          | 4.44      | 4.73      | 4.93      | 5.04  |

Flatness of ratio indicates reduction of pdf uncertainties

### Ratio WW/Z\*

- ☐ Computation similar to ratio ZZ/Z\*
  - □ Require two leptons with same cuts as ZZ events selection + MET>20 GeV
  - □ Contribution from gg->WW is about 10% of the total WW cross-section

$$R = \frac{\sigma_{q\overline{q} \to WW}^{NLO} + \sigma_{gg \to WW}^{LO}}{\sigma_{q\overline{q} \to Z^{(*)}}^{NLO}}$$

|         | $\sigma^{NLO}_{qar{q}	o Z^\star}$ | $\sigma^{NLO}_{q\overline{q} ightarrow WW}$ | $\sigma^{LO}_{gg	o WW}$ | $rac{\sigma_{\!WW}}{\sigma_{\!Z^*}}$ |
|---------|-----------------------------------|---------------------------------------------|-------------------------|---------------------------------------|
| Nominal | 4513                              | 1272                                        | 62.08                   | 0.296                                 |
| Max     | +4.6                              | +11.5                                       | +62.1                   | +8.9                                  |
| Min     | -9.9                              | -13.4                                       | -35.9                   | -5.0                                  |

# Results to NLO

# \sqrt{s} Dependence of VV/Z\*

□ Ratios are relatively stable w.r.t. \sqrt{s}

| $   \sqrt{s} [\text{TeV}]  $ | $\frac{\sigma(WW)}{\sigma(Z^*)}$ | $\frac{\sigma(ZW)}{\sigma(Z^*)}$ | $\left  \begin{array}{c} \sigma(ZZ) \\ \sigma(Z^*) \end{array} \right $ |
|------------------------------|----------------------------------|----------------------------------|-------------------------------------------------------------------------|
| 14                           | 0.280                            | .0481                            | .0063                                                                   |
| 12                           | 0.294                            | .0473                            | .0062                                                                   |
| 10                           | 0.271                            | .0462                            | .0062                                                                   |
| 8                            | 0.265                            | .0452                            | .0062                                                                   |
| 6                            | 0.256                            | .0435                            | .0062                                                                   |

### Ratio WW/ZZ

- ☐ The ratio WW/ZZ will diminish the error due to the gg->VV contribution.
  - ☐ The errors will probably be dominated by the experimental uncertainties

| $\sqrt{s}$ [ TeV] | $\sigma(WW)$ | $\delta\sigma(WW)$ | $\sigma(ZZ)$ | $\delta\sigma(ZZ)$ | $\frac{\sigma(ZZ)}{\sigma(WW)} \times 10^2$ | $\delta rac{\sigma(ZZ)}{\sigma(WW)}$ |
|-------------------|--------------|--------------------|--------------|--------------------|---------------------------------------------|---------------------------------------|
| 14                | 1272         | 11.5               | 20.09        | 4.0                | 1.58                                        | 3.9                                   |
|                   |              | -13.4              |              | -10.0              |                                             | -6.7                                  |
| 10                | 881.9        | 7.8                | 14.13        | 4.5                | 1.60                                        | 3.9                                   |
|                   |              | -10.1              |              | -7.4               |                                             | -3.0                                  |
| 8                 | 675.6        | 8.7                | 11.15        | 4.2                | 1.65                                        | 2.3                                   |
|                   |              | -7.1               |              | -5.7               |                                             | -4.2                                  |

- ☐ Results above are computed to NLO
- □ The scale errors due to gg->VV cancel almost completely

## **Jet Veto Survival Prob.**

- □ In order to suppress top backgrounds a full (\eta|<5) jet veto is usually applied</p>
  - □ Define ε(P<sub>T</sub>) as a fraction of the events that survive a cut on events with a jet of above a certain P<sub>T</sub> threshold in (\eta|<5)</p>
- ☐ Here we address the possibility of predicting the jet veto survival probability of WW an ZW from Z\*
- □ The P<sub>T</sub> spectra of the leading jet in VV and V are different, but the ratio of the jet veto survival probability should have small uncertainties

# $\sqrt{s} = 14 \text{ TeV}$

| $p_T [\text{GeV}]$ | $\varepsilon(Z^*)$ | $\delta \varepsilon(Z^*)$ | $\varepsilon(WW)$ | $\delta \varepsilon(WW)$ | $\frac{\varepsilon(WW)}{\varepsilon(Z^*)}$ | $\delta \frac{\epsilon(WW)}{\epsilon(Z^*)}$ |
|--------------------|--------------------|---------------------------|-------------------|--------------------------|--------------------------------------------|---------------------------------------------|
| 20                 | 0.67               | 8.5                       | 0.52              | 11.9                     | 0.78                                       | 5.1                                         |
|                    |                    | -13.2                     |                   | -15.2                    |                                            | -3.2                                        |
| 25                 | 0.72               | 6.4                       | 0.58              | 9.6                      | 0.81                                       | 4.0                                         |
|                    |                    | -9.9                      |                   | -11.8                    |                                            | -2.9                                        |
| 30                 | 0.76               | 5.1                       | 0.63              | 8.3                      | 0.82                                       | 3.6                                         |
|                    |                    | -7.8                      |                   | -9.1                     |                                            | -2.1                                        |
| 35                 | 0.79               | 4.1                       | 0.67              | 7.4                      | 0.84                                       | 3.3                                         |
|                    |                    | -6.3                      |                   | -7.3                     |                                            | -2.1                                        |
| 40                 | 0.82               | 3.5                       | 0.70              | 6.6                      | 0.85                                       | 3.0                                         |
|                    |                    | -5.3                      |                   | -5.9                     |                                            | -1.9                                        |
| 45                 | 0.84               | 3.2                       | 0.72              | 6.0                      | 0.86                                       | 2.8                                         |
|                    |                    | -4.4                      |                   | -5.4                     |                                            | -1.8                                        |
| 50                 | 0.86               | 2.9                       | 0.75              | 5.5                      | 0.87                                       | 2.6                                         |
|                    |                    | -3.8                      |                   | -5.0                     |                                            | -1.8                                        |
| 55                 | 0.87               | 2.6                       | 0.77              | 5.1                      | 0.88                                       | 2.5                                         |
|                    |                    | -3.3                      |                   | -4.7                     |                                            | -1.7                                        |
| 60                 | 0.88               | 2.4                       | 0.79              | 4.7                      | 0.89                                       | 2.3                                         |
|                    |                    | -2.9                      |                   | -4.3                     |                                            | -1.6                                        |
| 65                 | 0.89               | 2.1                       | 0.80              | 4.3                      | 0.90                                       | 2.1                                         |
|                    |                    | -2.6                      |                   | -4.0                     |                                            | -1.4                                        |
| 70                 | 0.90               | 1.9                       | 0.81              | 4.1                      | 0.90                                       | 2.1                                         |
|                    |                    | -2.4                      |                   | -3.7                     |                                            | -1.3                                        |
| 75                 | 0.91               | 1.8                       | 0.83              | 3.7                      | 0.91                                       | 1.9                                         |
|                    |                    | -2.2                      |                   | -3.3                     |                                            | -1.1                                        |
| 80                 | 0.92               | 1.6                       | 0.84              | 3.4                      | 0.91                                       | 1.7                                         |
|                    |                    | -2.0                      |                   | -3.2                     |                                            | -1.1                                        |
| 85                 | 0.93               | 1.5                       | 0.85              | 3.1                      | 0.92                                       | 1.6                                         |
|                    |                    | -1.9                      |                   | -3.1                     |                                            | -1.2                                        |
| 90                 | 0.93               | 1.4                       | 0.86              | 3.0                      | 0.92                                       | 1.5                                         |
|                    |                    | -1.8                      |                   | -2.9                     |                                            | -1.1                                        |
| 95                 | 0.94               | 1.3                       | 0.87              | 2.7                      | 0.93                                       | 1.4                                         |
|                    |                    | -1.7                      |                   | -2.7                     |                                            | -1.1                                        |
| 100                | 0.94               | 1.2                       | 0.88              | 2.6                      | 0.93                                       | 1.3                                         |
|                    |                    | -1.6                      |                   | -2.6                     |                                            | -1.1                                        |

# $\sqrt{s} = 10 \text{ TeV}$

| p <sub>T</sub> [ GeV] | $\varepsilon(Z^*)$ | $\delta \varepsilon(Z^*)$ | $\varepsilon(WW)$ | $\delta \varepsilon(WW)$ | $\frac{\varepsilon(WW)}{\varepsilon(Z^*)}$ | $\delta \frac{\varepsilon(WW)}{\varepsilon(Z^*)}$ |
|-----------------------|--------------------|---------------------------|-------------------|--------------------------|--------------------------------------------|---------------------------------------------------|
| 20                    | 0.69               | 8.6                       | 0.58              | 10.9                     | 0.83                                       | 2.1                                               |
|                       |                    | -7.2                      |                   | -13.5                    |                                            | -7.8                                              |
| 25                    | 0.75               | 6.8                       | 0.63              | 9.2                      | 0.85                                       | 2.2                                               |
|                       |                    | -5.5                      |                   | -10.9                    |                                            | -6.3                                              |
| 30                    | 0.78               | 5.6                       | 0.68              | 8.0                      | 0.86                                       | 2.2                                               |
|                       |                    | -4.3                      |                   | -9.8                     |                                            | -5.8                                              |
| 35                    | 0.81               | 4.8                       | 0.71              | 7.1                      | 0.87                                       | 2.1                                               |
|                       |                    | -3.7                      |                   | -9.0                     |                                            | -5.4                                              |
| 40                    | 0.84               | 4.1                       | 0.74              | 6.2                      | 0.88                                       | 2.0                                               |
|                       |                    | -3.3                      |                   | -8.1                     |                                            | -4.9                                              |
| 45                    | 0.86               | 3.6                       | 0.76              | 5.4                      | 0.89                                       | 1.7                                               |
|                       |                    | -3.0                      |                   | -7.3                     |                                            | -4.4                                              |
| 50                    | 0.87               | 3.2                       | 0.79              | 4.8                      | 0.90                                       | 1.6                                               |
|                       |                    | -2.7                      |                   | -6.8                     |                                            | -4.2                                              |
| 55                    | 0.89               | 2.9                       | 0.80              | 4.4                      | 0.91                                       | 1.5                                               |
|                       |                    | -2.4                      |                   | -6.3                     |                                            | -4.0                                              |
| 60                    | 0.90               | 2.6                       | 0.82              | 4.0                      | 0.91                                       | 1.4                                               |
|                       |                    | -2.3                      |                   | -6.0                     |                                            | -3.8                                              |
| 65                    | 0.91               | 2.3                       | 0.83              | 3.8                      | 0.92                                       | 1.4                                               |
|                       |                    | -2.1                      |                   | -5.5                     |                                            | -3.4                                              |
| 70                    | 0.92               | 2.1                       | 0.85              | 3.4                      | 0.93                                       | 1.2                                               |
|                       |                    | -1.9                      |                   | -5.4                     |                                            | -3.5                                              |
| 75                    | 0.92               | 2.0                       | 0.86              | 3.2                      | 0.93                                       | 1.2                                               |
|                       |                    | -1.8                      |                   | -5.1                     |                                            | -3.4                                              |
| 80                    | 0.93               | 1.8                       | 0.87              | 2.9                      | 0.94                                       | 1.1                                               |
|                       |                    | -1.7                      |                   | -4.8                     |                                            | -3.2                                              |
| 85                    | 0.94               | 1.7                       | 0.88              | 2.8                      | 0.94                                       | 1.1                                               |
|                       |                    | -1.6                      |                   | -4.5                     |                                            | -2.9                                              |
| 90                    | 0.94               | 1.5                       | 0.89              | 2.6                      | 0.94                                       | 1.0                                               |
|                       |                    | -1.5                      |                   | -4.2                     |                                            | -2.8                                              |
| 95                    | 0.95               | 1.4                       | 0.90              | 2.4                      | 0.95                                       | 0.9                                               |
|                       |                    | -1.3                      |                   | -4.0                     |                                            | -2.7                                              |
| 100                   | 0.95               | 1.3                       | 0.90              | 2.2                      | 0.95                                       | 0.9                                               |
|                       |                    | -1.3                      |                   | -3.9                     |                                            | -2.7                                              |

# \sqrt{s} Dependence of Jet Veto

### Results of $\varepsilon$ shown for $P_T$ =30 GeV

|            |                  | WW          | $W$ $Z^*$        |                |             |                             | ]                                                                           |
|------------|------------------|-------------|------------------|----------------|-------------|-----------------------------|-----------------------------------------------------------------------------|
| $\sqrt{s}$ | $  < p_{Tj} >  $ | $ < \eta >$ | $arepsilon_{jv}$ | $  < p_{Tj} >$ | $ < \eta >$ | $oldsymbol{arepsilon}_{jv}$ | $rac{arepsilon_{j_{\mathcal{V}}}^{WW}}{arepsilon_{j_{\mathcal{V}}}^{Z^*}}$ |
| 14         | 38.6             | 0.76        | 0.64             | 22.3           | 0.58        | 0.77                        | 0.83                                                                        |
| 12         | 34.8             | 0.68        | 0.67             | 20.7           | 0.54        | 0.78                        | 0.86                                                                        |
| 10         | 32.1             | 0.66        | 0.69             | 18.9           | 0.50        | 0.80                        | 0.86                                                                        |
| 8          | 27.7             | 0.59        | 0.72             | 17.2           | 0.47        | 0.81                        | 0.89                                                                        |
| 6          | 22.7             | 0.51        | 0.76             | 14.3           | 0.40        | 0.84                        | 0.90                                                                        |

# \sqrt{s} Dependence of Jet Veto

|                    | 12                  |                                                | 10                  |                                                | 8                   |                                                | 6                   |                                                |
|--------------------|---------------------|------------------------------------------------|---------------------|------------------------------------------------|---------------------|------------------------------------------------|---------------------|------------------------------------------------|
| $p_T[\text{ GeV}]$ | $\varepsilon^R(WW)$ | $\frac{\varepsilon^R(WW)}{\varepsilon^R(Z^*)}$ | $\varepsilon^R(WW)$ | $\frac{\varepsilon^R(WW)}{\varepsilon^R(Z^*)}$ | $\varepsilon^R(WW)$ | $\frac{\varepsilon^R(WW)}{\varepsilon^R(Z^*)}$ | $\varepsilon^R(WW)$ | $\frac{\varepsilon^R(WW)}{\varepsilon^R(Z^*)}$ |
| 20                 | 1.07                | 1.04                                           | 1.10                | 1.04                                           | 1.16                | 1.08                                           | 1.25                | 1.11                                           |
| 25                 | 1.06                | 1.03                                           | 1.08                | 1.04                                           | 1.14                | 1.07                                           | 1.21                | 1.09                                           |
| 30                 | 1.05                | 1.03                                           | 1.08                | 1.04                                           | 1.12                | 1.06                                           | 1.18                | 1.08                                           |
| 35                 | 1.04                | 1.03                                           | 1.06                | 1.03                                           | 1.11                | 1.06                                           | 1.16                | 1.08                                           |
| 40                 | 1.04                | 1.03                                           | 1.06                | 1.03                                           | 1.10                | 1.05                                           | 1.15                | 1.07                                           |
| 45                 | 1.04                | 1.02                                           | 1.05                | 1.03                                           | 1.09                | 1.05                                           | 1.13                | 1.07                                           |
| 50                 | 1.03                | 1.02                                           | 1.05                | 1.03                                           | 1.08                | 1.04                                           | 1.12                | 1.06                                           |
| 55                 | 1.03                | 1.02                                           | 1.05                | 1.02                                           | 1.08                | 1.04                                           | 1.11                | 1.06                                           |
| 60                 | 1.02                | 1.01                                           | 1.04                | 1.02                                           | 1.07                | 1.04                                           | 1.10                | 1.05                                           |
| 65                 | 1.02                | 1.01                                           | 1.04                | 1.02                                           | 1.07                | 1.04                                           | 1.10                | 1.05                                           |
| 70                 | 1.02                | 1.01                                           | 1.04                | 1.02                                           | 1.06                | 1.03                                           | 1.09                | 1.05                                           |
| 75                 | 1.01                | 1.01                                           | 1.03                | 1.02                                           | 1.06                | 1.03                                           | 1.09                | 1.05                                           |
| 80                 | 1.01                | 1.01                                           | 1.03                | 1.02                                           | 1.05                | 1.03                                           | 1.08                | 1.04                                           |
| 85                 | 1.01                | 1.01                                           | 1.03                | 1.02                                           | 1.05                | 1.03                                           | 1.07                | 1.04                                           |
| 90                 | 1.01                | 1.01                                           | 1.03                | 1.02                                           | 1.05                | 1.03                                           | 1.07                | 1.04                                           |
| 95                 | 1.01                | 1.00                                           | 1.03                | 1.02                                           | 1.04                | 1.03                                           | 1.07                | 1.04                                           |
| 100                | 1.01                | 1.00                                           | 1.03                | 1.01                                           | 1.04                | 1.02                                           | 1.06                | 1.04                                           |

# Jet Veto Survival Prob for gg->VV

- ☐ This quantity has not been calculated.
- □ We can get a feeling of how different it is from the qq->VV process by looking into gg->H



Jet veto survival probability for Higgs is very close to that of qq->WW

|            | WW           |            |                  |  |  |
|------------|--------------|------------|------------------|--|--|
| $\sqrt{s}$ | $< p_{Tj} >$ | $< \eta >$ | $arepsilon_{jv}$ |  |  |
| 14         | 38.6         | 0.76       | 0.64             |  |  |
| 12         | 34.8         | 0.68       | 0.67             |  |  |
| 10         | 32.1         | 0.66       | 0.69             |  |  |
| 8          | 27.7         | 0.59       | 0.72             |  |  |
| 6          | 22.7         | 0.51       | 0.76             |  |  |

Results of  $\varepsilon$  shown for  $P_T$ =30 GeV

# $\sqrt{s} = 14 \text{ TeV}$

| $p_T$ [ GeV] | $\varepsilon(Z^*)$ | $\delta \varepsilon(Z^*)$ | $\varepsilon(ZW)$ | $\delta \varepsilon(ZW)$ | $\frac{\varepsilon(ZW)}{\varepsilon(Z^*)}$ | $\delta \frac{\varepsilon(ZW)}{\varepsilon(Z^*)}$ |
|--------------|--------------------|---------------------------|-------------------|--------------------------|--------------------------------------------|---------------------------------------------------|
| 20           | 0.67               | 8.5                       | 0.48              | 13.2                     | 0.71                                       | 6.3                                               |
|              |                    | -13.2                     |                   | -15.3                    |                                            | -7.3                                              |
| 25           | 0.72               | 6.4                       | 0.53              | 11.1                     | 0.73                                       | 5.5                                               |
|              |                    | -9.9                      |                   | -12.2                    |                                            | -6.4                                              |
| 30           | 0.76               | 5.1                       | 0.57              | 9.7                      | 0.75                                       | 5.0                                               |
|              |                    | -7.8                      |                   | -10.8                    |                                            | -5.9                                              |
| 35           | 0.79               | 4.1                       | 0.61              | 8.7                      | 0.76                                       | 4.6                                               |
|              |                    | -6.3                      |                   | -9.9                     |                                            | -5.5                                              |
| 40           | 0.82               | 3.5                       | 0.64              | 7.7                      | 0.78                                       | 4.0                                               |
|              |                    | -5.3                      |                   | -9.2                     |                                            | -5.3                                              |
| 45           | 0.84               | 3.2                       | 0.66              | 7.1                      | 0.79                                       | 3.8                                               |
|              |                    | -4.4                      |                   | -8.5                     |                                            | -5.0                                              |
| 50           | 0.86               | 2.9                       | 0.68              | 6.5                      | 0.80                                       | 3.5                                               |
|              |                    | -3.8                      |                   | -7.8                     |                                            | -4.7                                              |
| 55           | 0.87               | 2.6                       | 0.70              | 6.1                      | 0.81                                       | 3.4                                               |
|              |                    | -3.3                      |                   | -7.5                     |                                            | -4.6                                              |
| 60           | 0.88               | 2.4                       | 0.72              | 5.6                      | 0.82                                       | 3.2                                               |
|              |                    | -2.9                      |                   | -7.0                     |                                            | -4.4                                              |
| 65           | 0.89               | 2.1                       | 0.74              | 5.4                      | 0.83                                       | 3.2                                               |
|              |                    | -2.6                      |                   | -6.6                     |                                            | -4.1                                              |
| 70           | 0.90               | 1.9                       | 0.75              | 5.0                      | 0.83                                       | 3.0                                               |
|              |                    | -2.4                      |                   | -6.3                     |                                            | -4.0                                              |
| 75           | 0.91               | 1.8                       | 0.77              | 4.7                      | 0.84                                       | 2.9                                               |
|              |                    | -2.2                      |                   | -6.1                     |                                            | -4.0                                              |
| 80           | 0.92               | 1.6                       | 0.78              | 4.4                      | 0.85                                       | 2.7                                               |
|              |                    | -2.0                      |                   | -5.8                     |                                            | -3.8                                              |
| 85           | 0.93               | 1.5                       | 0.79              | 4.2                      | 0.86                                       | 2.6                                               |
|              |                    | -1.9                      |                   | -5.6                     |                                            | -3.7                                              |
| 90           | 0.93               | 1.4                       | 0.80              | 4.0                      | 0.86                                       | 2.5                                               |
|              |                    | -1.8                      |                   | -5.2                     |                                            | -3.5                                              |
| 95           | 0.94               | 1.3                       | 0.81              | 3.8                      | 0.87                                       | 2.4                                               |
|              |                    | -1.7                      |                   | -4.9                     |                                            | -3.2                                              |
| 100          | 0.94               | 1.2                       | 0.82              | 3.6                      | 0.87                                       | 2.3                                               |
|              |                    | -1.6                      |                   | -4.6                     |                                            | -3.0                                              |

# $\sqrt{s} = 10 \text{ TeV}$

| $p_T [\text{GeV}]$ | $\varepsilon(Z^*)$ | $\delta \varepsilon(Z^*)$ | $\varepsilon(ZW)$ | $\delta \varepsilon(ZW)$ | $\frac{\varepsilon(ZW)}{\varepsilon(Z^*)}$ | $\delta \frac{\varepsilon(ZW)}{\varepsilon(Z^*)}$ |
|--------------------|--------------------|---------------------------|-------------------|--------------------------|--------------------------------------------|---------------------------------------------------|
| 20                 | 0.69               | 8.6                       | 0.52              | 16.2                     | 0.75                                       | 7.0                                               |
|                    |                    | -7.2                      |                   | -13.9                    |                                            | -8.4                                              |
| 25                 | 0.75               | 6.8                       | 0.58              | 13.2                     | 0.77                                       | 5.9                                               |
|                    |                    | -5.5                      |                   | -12.1                    |                                            | -7.5                                              |
| 30                 | 0.78               | 5.6                       | 0.62              | 11.7                     | 0.79                                       | 5.7                                               |
|                    |                    | -4.3                      |                   | -10.5                    |                                            | -6.5                                              |
| 35                 | 0.81               | 4.8                       | 0.65              | 10.1                     | 0.80                                       | 5.1                                               |
|                    |                    | -3.7                      |                   | -9.4                     |                                            | -5.9                                              |
| 40                 | 0.84               | 4.1                       | 0.68              | 8.9                      | 0.81                                       | 4.5                                               |
|                    |                    | -3.3                      |                   | -8.9                     |                                            | -5.7                                              |
| 45                 | 0.86               | 3.6                       | 0.70              | 8.1                      | 0.82                                       | 4.4                                               |
|                    |                    | -3.0                      |                   | -8.2                     |                                            | -5.4                                              |
| 50                 | 0.87               | 3.2                       | 0.72              | 7.5                      | 0.83                                       | 4.1                                               |
|                    |                    | -2.7                      |                   | -7.6                     |                                            | -5.0                                              |
| 55                 | 0.89               | 2.9                       | 0.74              | 6.9                      | 0.84                                       | 3.8                                               |
|                    |                    | -2.4                      |                   | -7.1                     |                                            | -4.8                                              |
| 60                 | 0.90               | 2.6                       | 0.76              | 6.3                      | 0.85                                       | 3.6                                               |
|                    |                    | -2.3                      |                   | -6.7                     |                                            | -4.5                                              |
| 65                 | 0.91               | 2.3                       | 0.78              | 5.9                      | 0.86                                       | 3.5                                               |
|                    |                    | -2.1                      |                   | -6.3                     |                                            | -4.2                                              |
| 70                 | 0.92               | 2.1                       | 0.79              | 5.5                      | 0.86                                       | 3.3                                               |
|                    |                    | -1.9                      |                   | -5.9                     |                                            | -4.0                                              |
| 75                 | 0.92               | 2.0                       | 0.80              | 5.2                      | 0.87                                       | 3.1                                               |
|                    |                    | -1.8                      |                   | -5.5                     |                                            | -3.8                                              |
| 80                 | 0.93               | 1.8                       | 0.82              | 4.8                      | 0.88                                       | 3.0                                               |
|                    |                    | -1.7                      |                   | -5.2                     |                                            | -3.6                                              |
| 85                 | 0.94               | 1.7                       | 0.83              | 4.5                      | 0.88                                       | 2.8                                               |
|                    |                    | -1.6                      |                   | -5.0                     |                                            | -3.5                                              |
| 90                 | 0.94               | 1.5                       | 0.84              | 4.2                      | 0.89                                       | 2.6                                               |
|                    |                    | -1.5                      |                   | -4.8                     |                                            | -3.4                                              |
| 95                 | 0.95               | 1.4                       | 0.85              | 4.0                      | 0.89                                       | 2.5                                               |
|                    |                    | -1.3                      |                   | -4.5                     |                                            | -3.2                                              |
| 100                | 0.95               | 1.3                       | 0.86              | 3.8                      | 0.90                                       | 2.4                                               |
|                    |                    | -1.3                      |                   | -4.2                     |                                            | -3.0                                              |

### **Outlook and Conclusions**

- ☐ The use of Z<sup>(\*)</sup> events is a powerful sample to normalize VV production
- $\Box$  Consider ratios of  $\sigma(VV)/\sigma(Z^{(*)})$ 
  - **□** Considered inclusive rates
    - The theoretical error of  $\sigma(ZZ,WW)/\sigma(Z^{(*)})$  is dominated by the LO uncertainties of gg->VV
    - Errors remain at the level of 10%
    - Ratios depend weakly on \sqrt{s} and the mass
    - Also considered  $\sigma(ZZ)/\sigma(WW)$  for which the uncertainty due to gg->VV cancels out
  - ☐ Consider Jet veto survival probability
    - Errors of ε(WW,ZW)/ε(Z\*) stay below 10%

# **EXTRA SLIDES**

# MCFM Settings

| Paramter          | Name      | Input Value              | Output Value determined by ewscheme |               |            |            |
|-------------------|-----------|--------------------------|-------------------------------------|---------------|------------|------------|
|                   | $(\_inp)$ |                          | -1                                  | 0             | 1          | 2          |
| $G_F$             | Gf        | $1.16639 \times 10^{-5}$ | input                               | calculated    | mput       | input      |
| $\alpha(M_Z)$     | aemmz     | 1/128.89                 | input                               | input         | calculated | input      |
| $\sin^2 \theta_w$ | XW        | 0.2312                   | calculated                          | input         | calculated | input      |
| $M_W$             | wmass     | $80.419~\mathrm{GeV}$    | input                               | calculated    | input      | calculated |
| $M_Z$             | zmass     | 91.188  GeV              | input                               | input         | input      | calculated |
| $m_t$             | mt        | 172.5  GeV               | calculated                          | $_{ m input}$ | input      | input      |

| Parameter      | Fortran name | Default value                       |  |
|----------------|--------------|-------------------------------------|--|
| $m_{	au}$      | mtau         | $1.777  \mathrm{GeV}$               |  |
| $m_{	au}^2$    | mtausq       | $3.1577 \; \mathrm{GeV^2}$          |  |
| $m_c^2$        | mcsq         | $2.25 \mathrm{GeV^2}$               |  |
| $m_b^2$        | mbsq         | $17.64  \mathrm{GeV^2}$             |  |
| $\Gamma_{	au}$ | tauwidth     | $2.269 \times 10^{-12} \text{ GeV}$ |  |
| $\Gamma_W$     | wwidth       | 2.06  GeV                           |  |
| $\Gamma_Z$     | zwidth       | 2.49  GeV                           |  |
| $V_{ud}$       | Vud          | 0.975                               |  |
| $V_{us}$       | Vus          | 0.222                               |  |
| $V_{ub}$       | Vub          | 0.                                  |  |
| $V_{cd}$       | Vcd          | 0.222                               |  |
| $V_{cs}$       | Vcs          | 0.975                               |  |
| $V_{cb}$       | Vcb          | 0.                                  |  |

### Petrielo et al $pp \rightarrow W+X$ $pp \rightarrow (Z, \gamma^*) + X$ $W^{-}$ $W^+$ **NNLO** 400 $d^2\sigma/dM/dY~[pb/GeV]$ $\mathrm{d}^2\sigma/\mathrm{dM}/\mathrm{dY}\;[\mathrm{pb/GeV}]$ 300 200 $\sqrt{s} = 14 \text{ TeV}$ $M = M_Z$ 100 $\sqrt{s} = 14 \text{ TeV}$ $M/2 \le \mu \le 2M$ $M = M_{W}$ $M/2 \le \mu \le 2M$ Y -2 0 Y

The NLO band does contain the NNLO result for Z,W<sup>+</sup>,W<sup>-</sup> production Same applies for the gg->H production