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The ATLAS Trigger
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Triggering

The ATLAS Trigger is based on a 3 level design

Levell is a firmware trigger
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Triggering

The ATLAS Trigger is based on a 3 level design

Level2 and Level3 use the same

software infrastructure as offline

> Together they form the High-
Level Trigger

\

] —_ Readout drivers
Regions of Interest | | | (RODs)

LEVEL 2 Readout buffers
TRIGGER (ROBs)

~ 1 kHz
~10 ms |

Event builder |

EVENT FILTER b FuII-eventd buffers
an
~ 100 Hz processor sub-farms

~1s

Data recording y

Kyle Cranmer (NYU Detecting the Unexpected
Y g P



Triggering

The Level2 Trigger algorithms are restricted to a “Region of Interest”

Interaction rate
~1 GHz CALO MUON TRACKING ]

Bunch crossing
rate 40 MHz
Pipeline
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Triggering

The ATLAS Trigger is based on a 3 level design

Level3 (the EventFilter)
»can access to the entire event
»about 1 second for decision
> output rate of 200 Hz

N Studies of trigger menu at higher
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Some Terms

Pile-Up:
» More than one p-p collision in the event (in time pile-up)
» effects from surrounding bunch-crossings
» induces non-linear effects in trigger rate
» At 1034 cm=2 s~1 expect ~25 collisions per bunch-crossing
Threshold:
- cut on quantity at a given level. Eg: Jet pT > 200 GeV

Trigger Rate:
- rate that we select events, usually dominated by QCD or junk

Pre-scale:
- keep only a fraction of events that satisfy a threshold

- a way to add low thresholds without overwhelming rate
- useful for understanding performance of higher thresholds
- Not a good way to select new physics
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Rough Scale for Un-Prescaled Thresholds

Rates & Menu for high luminosity (1034) are very preliminary
These are just rough scales for the thresholds

Isolated Electron 25 GeV
2 Isolated Electrons (Photons) 15 GeV (20 GeV)

Non-Isolated Electron or Photon 60 GeV

| Muon 20 GeV (6 GeV at LI w/ prescale)
2 Muons 6 GeV

| Electron + | Muon ~10 GeV + 6 GeV

| Tau ~60 GeV

| Jet ~400 GeV

2 Jets ~300 GeV (also forward jet triggers from L1)
3 Jets ~100 GeV
4 Jets ~60 GeV

b-tagged Jets slightly lower thresholds than jets
MissingET ~100 GeV

Jet + MissingET 70 GeV + 70 GeV

SumEt & Sum Jet Et 500 GeV - | TeV

tau + MissingET 25 GeV + 40 GeV

Many other combinations

B-physics (J/Psi etc.) low pT muons + vertexing
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103" Rate for L1 MET

Rate is integral of the distribution from threshold to infinity
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1031 Rate for Jet Et Sum

103! Rate

JetEtSum trigger rate from QCD samples

Minimum bias trigger rate

400 600 800 | 1000
JetEtSum threshold [GeV]
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1037 Rate for L1 SUmET
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L1 Muon
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L1 Muon
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Slides Stolen From Min-Bias Studies

Where is the Momentum Limit ?

« Tracker is in principle sensitive to soft tracks
— Pt =400 MeV - tracks reach end of TRT
— Pt =150 MeV - tracks reach last SCT layer
— Pt= 50 MeV - tracks reach all Pixel layers
- Do not need to run with low field

« Event graphics using Fatras simulation
— Tools are there to tune for such tracks

A.Salzburger

M.Elsing Talk in SM meetirie
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LvL2 Inner-Detector Algorithm

Just to show that tracking can work for non-pointing sources like
cosmics

m Uses the LVL2 tracking algorithm IDScan
¢ Shifting the space points in x so it looks like the cosmic comes from the IP

¢ TRT extrapolation is also working

¢ Currently trying to get to work for SiTrack algorithm too
m This has been run on simulated data and real cosmic ray events from SR1

1
0.8
0.6
0.4
0.2

O
o

+
it

_|_

—
Ty

1

%

|

—
[=]

-200

100 0

100

200

300 (mMm)

1
0.8
0.6
0.4
0.2

.:III|III|III|III|III|II

4—h__|_+ _l_-|- ++—|- - e ++++++ _|_+++—|_+_i__|_+_|_ +
Z 0

%

500 200

200 ]

700 400

500

aE

1
0.8
0.6
0.4
0.2

I",\;,_III|III|III|III|III|II

-—H++ -

? o

T
_|_
F

L A+ T
_|_

1)

" .-2|‘2. PR

" .-1|l7. —

.-1|l6. PR

Kyle Cranmer (NYU)

Detecting the Unexpected



J/Psi studies in the HLT

Method 1: Trigger Efficiency Efficiency Mean
An X Ap = 0.4 x 0.4, step Jhy—e+e- BB—uX  time
CSC data (no pileup) L1 33.1%

L2 Calo 20.0%
0 Kinematical cuts

= pT(e*)>1 GeV

= pT(e)>1GeV Inv. mass 4%
= In| <247

= crack region excluded [Tnvariant mass of Jy_|

L2 ID-Calo 14.8%

. o “F Daniel Scheirich
Just an example of tracking and vertexing in “[Valeria Perez-Reale

the HLT. aof

40

This 1s an old plot, just to give a feeling
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Things people look consider

L1 Efficiencies for very low-pT muons:

LVL1 Rol

- Reco ID Track

Muons pT=2 GeV
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