

A little bit about the ATLAS Trigger

Kyle Cranmer (NYU)

The LHC

- 26 km in circumference
- p-p 0 $\sqrt{s}=14~{\rm TeV}$
- Instantaneous Luminosity $\approx 10^{33} 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
- "pile-up" : 2-20 inelastic collisions per bunch crossing
- 40 MHz bunch crossings

The ATLAS Trigger

The ATLAS Trigger is based on a 3 level design

Level1 is a firmware trigger

- ►only Calo & Muon
- ► makes decision in <2.5 ms,
- output rate of 100kHz
- seeds "Regions of Interest"

The ATLAS Trigger is based on a 3 level design

Level2 and Level3 use the same software infrastructure as offline

Together they form the High-Level Trigger

The Level2 Trigger algorithms are restricted to a "Region of Interest"

The ATLAS Trigger is based on a 3 level design

Level3 (the EventFilter)

- can access to the entire event
- about 1 second for decision
- output rate of 200 Hz

Studies of trigger menu at higher luminosities where pile-up is important are lagging.

Some Terms

Pile-Up:

- More than one p-p collision in the event (in time pile-up)
- effects from surrounding bunch-crossings
- induces non-linear effects in trigger rate
- → At 10³⁴ cm⁻² s⁻¹ expect ~25 collisions per bunch-crossing

Threshold:

cut on quantity at a given level. Eg: Jet pT > 200 GeV

Trigger Rate:

rate that we select events, usually dominated by QCD or junk

Pre-scale:

- keep only a fraction of events that satisfy a threshold
 - a way to add low thresholds without overwhelming rate
 - useful for understanding performance of higher thresholds
 - Not a good way to select new physics

Rough Scale for Un-Prescaled Thresholds

Rates & Menu for high luminosity (10³⁴) are <u>very</u> preliminary These are just rough scales for the thresholds

Isolated Electron	25 GeV	
2 Isolated Electrons (Photons)	15 GeV (20 GeV)	
Non-Isolated Electron or Photon	60 GeV	
I Muon	20 GeV (6 GeV at L1 w/ prescale)	
2 Muons	6 GeV	
I Electron + I Muon	~10 GeV + 6 GeV	
l Tau	~60 GeV	
l Jet	~400 GeV	
2 Jets	~300 GeV (also forward jet triggers from LI)	
3 Jets	~100 GeV	
4 Jets	~60 GeV	
b-tagged Jets	slightly lower thresholds than jets	
MissingET	~100 GeV	
Jet + MissingET	70 GeV + 70 GeV	
SumEt & Sum Jet Et	500 GeV - I TeV	
tau + MissingET	25 GeV + 40 GeV	
Many other combinations		
B-physics (J/Psi etc.)	low pT muons + vertexing	

10³¹ Rate for L1 MET

Rate is integral of the distribution from threshold to infinity

Rate goes up at least 3 orders of magnitude for 10³⁴

In practice, nonlinear effects tend to make rates even higher

10³¹ Rate for Jet Et Sum

10³¹ Rate for L1 SumET

L1 Muon

L1 Muon

Slides Stolen From Min-Bias Studies

Where is the Momentum Limit?

- Tracker is in principle sensitive to soft tracks
 - Pt = 400 MeV tracks reach end of TRT
 - Pt = 150 MeV tracks reach last SCT layer
 - Pt = 50 MeV tracks reach all Pixel layers
 - → Do not need to run with low field
- Event graphics using Fatras simulation
 - Tools are there to tune for such tracks

A.Salzburger

M.Elsing Talk in SM meetin

50MeV

LvL2 Inner-Detector Algorithm

Just to show that tracking can work for non-pointing sources like cosmics

- Uses the LVL2 tracking algorithm IDScan
 - **♦** Shifting the space points in x so it looks like the cosmic comes from the IP
 - TRT extrapolation is also working
 - **♦** Currently trying to get to work for SiTrack algorithm too
- This has been run on simulated data and real cosmic ray events from SR1

J/Psi studies in the HLT

Method 1:

$$\Delta \eta \times \Delta \varphi = 0.4 \times 0.4$$
,

CSC data (no pileup)

- Kinematical cuts
 - pT(e+) >1 GeV
 - pT(e⁻) >1 GeV
 - |η| < 2.47
 - crack region excluded

Trigger step	Efficiency J/ψ→e+e-	Efficiency BB→μX	Mean time
L1	80.9%	33.1%	
L2 Calo	70.1%	20.0%	2.6 ms
L2 ID-Calo	63.9%	14.8%	16.4 ms
Inv. mass	42.6%	4%	

Just an example of tracking and vertexing in the HLT.

This is an old plot, just to give a feeling

Things people look consider

L1 Efficiencies for very low-pT muons:

