
The Affleck–Dine–Seiberg
superpotential



SUSY QCD Symmetry
SU(N) with F flavors where F < N

SU(N) SU(F ) SU(F ) U(1) U(1)R

Φ, Q 1 1 F−N
F

Φ, Q 1 -1 F−N
F

Recall that the auxiliary Da fields:

Da = g(Φ∗jn(T a)mn Φmj − Φ
jn

(T a)mn Φ
∗
mj)

where j = 1 . . . F ; m,n = 1 . . . N , a = 1 . . . N2 − 1,
D-term potential:

V = 1
2D

aDa



Classical Moduli Space
D-flat moduli space

〈Φ∗〉 = 〈Φ〉 =



v1

. . .
vF

0 . . . 0
...

...
0 . . . 0


where 〈Φ〉 is a N × F matrix
generic point in the moduli space SU(N)→ SU(N − F )

N2 − 1− ((N − F )2 − 1) = 2NF − F 2

of 2NF chiral s.multiplets only F 2 singlets are massless
super Higgs mechanism: vector s.multiplet “eats” a chiral s.multiplet



Light “Mesons”
describe F 2 light degrees of freedom in a gauge invariant way by

F × F matrix

M j
i = Φ

jn
Φni

where we sum over the color index n
M is a chiral superfield which is a product of chiral superfields, the

only renormalization of M is the product of wavefunction renormaliza-
tions for Φ and Φ



Chiral Symmetries
axial U(1)A symmetry is explicitly broken by instantons
U(1)R symmetry remains unbroken

mixed anomalies between the global current and two gluons
U(1)R: multiply the R-charge by the index

gaugino contributes 1 ·N
each of the 2F quarks contributes ((F −N)/F − 1) · 1

2

ARgg = N +
(
F−N
F − 1

)
1
22F = 0

U(1)A: gauginos do not contribute

AAgg = 1 · 2F · 1
2



Spurious Symmetry
keep track of selection rules from the broken U(1)A
define a spurious symmetry

Q→ eiαQ
Q→ eiαQ

θYM → θYM + 2Fα

holomorphic intrinsic scale transforms as

Λb → ei2FαΛb

construct the effective superpotential from: W a, Λ, and M

U(1)A U(1)R
W aW a 0 2

Λb 2F 0
detM 2F 2(F −N)

detM is only SU(F )× SU(F ) invariant made out of M



Effective Wilsonian Superpotential
terms have the form

Λbn(W aW a)m(detM)p

periodicity of θYM ⇒ only have powers of Λb

(for m = 1 perturbative term b ln(Λ)W aW a because of anomaly)
superpotential is neutral under U(1)A and has charge 2 under U(1)R

0 = n 2F + p 2F
2 = 2m+ p 2(F −N)

solution is

n = −p = 1−m
N−F

b = 3N − F > 0, sensible Λ → 0 limit if n ≥ 0, implies m ≤ 1(because
N > F )

W aW a contains derivatives, locality requires m ≥ 0 and integer



Effective Wilsonian Superpotential
only two possible terms: m = 0 and m = 1

m = 1 term is field strength term
periodicity of θYM ⇒ coefficient proportional to b ln Λ.

m = 0 term is the Affleck–Dine–Seiberg (ADS) superpotential:

WADS(N,F ) = CN,F

(
Λ3N−F

detM

)1/(N−F )

where CN,F is renormalization scheme-dependent



Consistency of WADS: moduli space
Consider giving a large VEV, v, to one flavor

SU(N)→ SU(N − 1) and one flavor is “eaten” by the Higgs mechanism
2N − 1 broken generators

effective theory has F − 1 flavors and 2F − 1 gauge singlets since

2NF − (2N − 1)− (2F − 1) = 2(N − 1)(F − 1)

low-energy effective theory for the SU(N − 1) gauge theory with
F − 1 flavors (gauge singlets interact only through irrelevant operators)
running holomorphic gauge coupling, gL

8π2

g2
L

(µ)
= bL ln

(
µ

ΛL

)
bL = 3(N − 1)− (F − 1) = 3N − F − 2

ΛL is the holomorphic intrinsic scale of the low-energy effective theory

ΛL ≡ |ΛL|eiθYM/bL = µe2πiτL/bL



Consistency of WADS: moduli space
low-energy coupling should match onto high-energy coupling

8π2

g2(µ) = b ln
(
µ
Λ

)
at the scale v in DR:

8π2

g2(v) = 8π2

g2
L

(v)(
Λ
v

)b
=
(

ΛL

v

)bL

Λ3N−F

v2 = Λ3N−F−2
N−1,F−1

subscript shows the number of colors and flavors: ΛN−1,F−1 ≡ ΛL



Consistency of WADS: moduli space
represent the light (F −1)2 degrees of freedom as an (F −1)×(F −1)

matrix M̃

detM = v2detM̃ + . . . ,

where . . . represents terms involving the decoupled gauge singlet fields
Plugging into WADS(N,F ) and using(

Λ3N−F

v2

)1/(N−F )

=
(

Λ3N−F−2
N−1,F−1

)1/((N−1)−(F−1))

reproduce WADS(N − 1, F − 1)
provided that CN,F is only a function of N − F



Consistency of WADS: moduli space
equal VEVs for all flavors

SU(N)→ SU(N − F ) and all flavors are “eaten”
from matching running couplings:(

Λ
v

)3N−F
=
(

ΛN−F,0
v

)3(N−F )

we then have

Λ3N−F

v2F = Λ3(N−F )
N−F,0

So the effective superpotential is given by

Weff = CN,FΛ3
N−F,0

reproduces holomorphy arguments for gaugino condensation in pure SUSY
Yang-Mills



Consistency of WADS: mass terms
mass, m, for one flavor
low-energy effective theory is SU(N) with F − 1 flavors
Matching gauge couplings at m:(

Λ
m

)b
=
(

ΛL

m

)bL

mΛ3N−F = Λ3N−F+1
N,F−1

holomorphy ⇒ superpotential must have the form

Wexact =
(

Λ3N−F

detM

)1/(N−F )

f(t) ,

where

t = mMF
F

(
Λ3N−F

detM

)−1/(N−F )

,

since mMF
F is mass term in superpotential, it has U(1)A charge 0, and

R-charge 2, so t has R-charge 0



Consistency of WADS: mass terms
Taking the limit Λ→ 0, m→ 0, must recover our previous results with
the addition of a small mass term

f(t) = CN,F + t

in double limit t is arbitrary so this is the exact form

Wexact = CN,F

(
Λ3N−F

detM

)1/(N−F )

+mMF
F



Consistency of WADS: mass terms
equations of motion for MF

F and M j
F

∂Wexact
∂MF

F

= CN,F

(
Λ3N−F

detM

)1/(N−F ) (
−1
N−F

)
cof(MF

F )
detM +m = 0

∂Wexact

∂Mj
F

= CN,F

(
Λ3N−F

detM

)1/(N−F ) (
−1
N−F

)
cof(Mj

F
)

detM = 0

(where cof(MF
i ) is the cofactor of the matrix element MF

i ) imply that

CN,F

N−F

(
Λ3N−F

detM

)1/(N−F )

= mMF
F (∗)

and that cof(MF
i ) = 0. Thus, M has the block diagonal form

M =
(
M̃ 0
0 MF

F

)



Consistency of WADS: mass terms
Plugging (*) into the exact superpotential we find

Wexact(N,F − 1) = (N − F + 1)
(
CN,F

N−F

)(N−F )/(N−F+1)

×
(

Λ3N−F+1
N,F−1

detM̃

)1/(N−F+1)

∝WADS(N,F − 1). For consistency, we have a recursion relation:

CN,F−1 = (N − F + 1)
(
CN,F

N−F

)(N−F )/(N−F+1)

instanton calculation reliable for F = N − 1 (gauge group is completely
broken), determines CN,N−1 = 1 in the DR scheme

CN,F = N − F



Consistency of WADS: mass terms
masses for all flavors

Holomorphy ⇒

Wexact = CN,F

(
Λ3N−F

detM

)1/(N−F )

+mi
jM

j
i

where mi
j is the quark mass matrix. Equation of motion for M

M j
i = (m−1)ji

(
Λ3N−F

detM

)1/(N−F )

(∗∗)

taking the determinant and plugging the result back in to (**) gives

Φ̄jΦi = M j
i = (m−1)ji

(
detmΛ3N−F )1/N

result involves Nth root ⇒ N distinct vacua, differ by the phase of M



Consistency of WADS: mass terms
Matching the holomorphic gauge coupling at mass thresholds

Λ3N−Fdetm = Λ3N
N,0

So

Weff = NΛ3
N,0

reproduces holomorphy result for gaugino condensation and determines
coefficient (up to phase)

〈λaλa〉 = −32π2e2πik/NΛ3
N,0

where k = 1...N . Starting with F = N − 1 flavors can derive the correct
ADS effective superpotential for 0 ≤ F < N − 1, and gaugino condensa-
tion for F = 0

justifies the assumption that there was a mass gap in SUSY YM



Generating WADS from instantons
Recall ADS superpotential

WADS ∝ Λb/(N−F )

instanton effects are suppressed by

e−Sinst ∝ Λb

So for F = N − 1 it is possible that instantons can generate WADS

SU(N) can be completely broken
allows for reliable instanton calculation



Generating WADS from instantons
With equal VEVs WADS predicts quark masses of order

∂2WADS

∂Φi∂Φ
j ∼ Λ2N+1

v2N

and a vacuum energy density of order∣∣∣∂WADS
∂Φi

∣∣∣2 ∼ ∣∣∣Λ2N+1

v2N−1

∣∣∣2



Generating WADS from instantons
single instanton vertex has 2N gaugino legs and 2F = 2N −2 quark legs

2N−2

I

quark legs connected to gaugino legs by a scalar VEV, two gaugino legs
converted to quark legs by the insertion of VEVs

fermion mass is generated



Generating WADS from instantons
instanton calculation → quark mass

m ∼ e−8π2/g2(1/ρ)v2Nρ2N−1 ∼ (Λρ)b v2Nρ2N−1 ∼ Λ2N+1v2Nρ4N

dimensional analysis works because integration over ρ dominated by

ρ2 = b
16π2v2

quark legs ending at the same spacetime point gives F component of M ,
and vacuum energy of the right size

can derive the ADS superpotential for smaller values of F from F =
N − 1, so we can derive gaugino condensation for zero flavors from the
instanton calculation with N − 1 flavors



Generating WADS from 〈λλ〉
For F < N − 1 can’t use instantons since at generic point in moduli
space SU(N)→ SU(N − F ) ⊃ SU(2)

IR effective theory splits into and SU(N − F ) gauge theory and F 2

gauge singlets described by M
two sectors coupled by irrelevant operators
SU(N − F ) gauginos have an anomalous R-symmetry
R-symmetry spontaneously broken by squark VEVs not anomalous

QCD Analogy:
SU(2)L × SU(2)R spontaneously broken

axial anomaly of the quarks is reproduced in the low-energy theory by
an irrelevant operator (the Wess–Zumino term) which gives π0 → γγ



Generating WADS from 〈λλ〉
In SUSY QCD the correct term is present since

τ = 3(N−F )
2πi ln

(
ΛN−F,0

µ

)
depends on ln detM through matching condition

Λ3N−F = Λ3(N−F )
N−F,0 detM

relevant term in effective theory ∝∫
d2θ ln det(M)W aW a + h.c.

=
[
Tr(FMM−1)λaλa + Arg(detM)F aµν F̃ aµν + . . .

]
+ h.c.

where FM is the auxiliary field for M
second term can be seen to arise through triangle diagrams involving

the fermions in the massive gauge supermultiplets



Generating WADS from 〈λλ〉
Arg(detM) transforms under chiral rotation as Nambu–Goldstone

boson of the spontaneously broken R-symmetry:

Arg(detM)→ Arg(detM) + 2Fα

equation of motion for FM gives

FM = ∂W
∂M = M−1〈λaλa〉 ∝M−1Λ3

N−F,0 ∝M−1
(

Λ3N−F

detM

)1/(N−F )

gives vacuum energy density that agrees with the ADS calculation
potential energy implies that a nontrivial superpotential generated,

only superpotential consistent with holomorphy and symmetry is WADS

for F < N − 1 flavors, gaugino condensation generates WADS



Vacuum structure

VADS =
∑
i |
∂WADS
∂Qi

|2 + |∂WADS

∂Qi

|2

=
∑
i |Fi|2 + |F i|2 ,

is minimized as detM →∞, so there is a “run-away vacuum”
potential loop-hole: wavefunction renormalization effects not included,

could produce local minima, could not produce new vacua unless renor-
malization factors were singular

cannot happen unless particles are massless at point in the moduli
space, also produces singularity in the superpotential

At detM = 0, massive gauge supermultiplets become massless
recent progress on theory without VEVs
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S � 1 if F < 3N/2


