SUSY Lagrangians



Wess-Zumino




The tree Wess—Zumino model

S = fd4513 (ES —|—[,f)
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5¢* — €£¢Td = €T¢T
OLs = €0 0,,0* + €101 9,0
6o = —i(c¥eN) g 0,0 YT, = i(ec?)g O, 0"
6L; = —ea”0,¢*c" 0,0 +hiota’el 0,0,¢
Pauli identities:
—v V—,LLB_ vsB [=p v —Vv 5_ v B
[0“’0 +0"o ]a—277“ or [a o’V +0o a“}d—Qn” 0%

6Ly = —ed'ip 00" — MYt 0,0
+0, (ectT 1 B,0* — e O " + €Tyt O 9) .

total derivative so:

05 =0



Commutators of SUSY
transtormations

(0esdcy — 0e10cy)p = —i(er0tel — exotel) 9,0

(8ey 0, — Oy 0, )b = —i(07 €] ) €20,0 4+ i(07€h) 0 10,0
Fierz identity:

Xa (€n) = =& (XN) — (€X)Na

(0ez0e; — 0c,0cy) Ve = 2(610'“65 — €20 E1) Mwa
+i(€10 620' HOLY — €20 610' HOLY).

SUSY algebra closes on-shell.



on-shell the fermion EOM reduces DOF by two

Py = (p,0,0,p)
0 0
o= (o 5 ) (1)

projects out half of DOF

off-shell on-shell
o, O* 2 d.o.f. 2 d.o.f.
Vo,V 4 d.of 2 d.o.f.

SUSY is not manifest off-shell
trick: add an auxiliary boson field F

off-shell on-shell
F,F* 2 d.o.t. 0 d.o.t.

Eaux =F*F



OF = —ielatd,np, 0F* = id,bTote
0 Lonx = 10,015 e F — ie'a"0,0 F*
modify the transformation of the fermion:
Sipe = —i(0V e Dup + €aF, 0T, = +i(eo”)y 00" + €l F*

"VLy = 6Ly +iTTHO T + i MO e F
= 0Ly +ielTH O, F* — i0, T eF + 0, (i1 THeF)

last term is a total derivative
Srew = [ d*x Liree = | d*z (Ls+ Lt + Laux)
is invariant under SUSY transformations:

55 = 0



Commutator of two SUSY
transformations acting on the fermion

(0ex0e; = 0y 0ey) 0 = —2(610"“6; — €20 61) ,uwoz
+i(€10 620"“8“?70 — €94 610“’8“@&)
+0e €10 F — Oc €20 F
Oey€1aF — Oc €20 F = ela(—iegﬁu(?u@b) — 6204(—2'615“8“@0)
(en0c; — 06,06, ) = z(ela“e; — €50 61) 0 q

SUSY algebra closes for off-shell fermions



Commutator acting on the auxiliary

field

562 (—iei?“@uw) _ 561 (—ie;ﬁ”@uw)
—iel g8, (—io" el D, p + €2 F)
+iebatd, (—iovel 0,¢ + € F)
—i(eyotel — exotel) 0, F
—elohavel 0,0,0 + elotavel 0,0,¢

(562 561 o 661 562 )F

Thus for
X = ¢, 0%, ¢, 1, F, F*

(en0e; — 0e,0e,) X = —i(ela“eg — 620'“61) 0, X



Noether




Noether’s Theorem

Noether theorem:
corresponding to every continuous symmetry is a conserved current.
infinitesimal symmetry (1 +eT)X = X 40X

5L = L(X +6X) — L(X) =, V"

EOM: O ( oL ) _ oL
5(0,X)) = 9x>

OVt =0L = 2£5X + (5%e)8(0,X)
— 8u 9(0y X)) 0X + (a(a X)) O 0X

oL
= Oy 9(0,, X)5X)

D" = Oy (59555 0X — V)



Conserved SuperCurrent

conserved supercurrent, J£:

eJH 4+ €l JTH = a(ng) 0X — VH

eJH + eV JTH = §pOFp* + ¢*OH ¢ + i ToHdyp — VH

eJH + T JH = epOHd* 4 €lpTOF ¢ + ipTaH (—ioYel 0,0 + €F)
—eohTVY 0,0 + ep O*p* — €T OFp — i ToHeF
= 2Ot + Yigtovel 0,¢ — ea”T ) O, ¢



Using the Pauli identity:
JF = (ovTH) g O,0%, JHs = (WTTH0Y)4 0,0.
conserved supercharges:
Qo =V2[dBzJS, QT, =2 [d3zJ,
generate SUSY transformations
[EQ +e7QT, X] = —iv/26X

Commutators of the supercharges acting on fields give:

{ez@—l—egQT, [€1Q+EJ{QT, XH — [elQ—l—eIQT, [EQQ—FE;QT, XH

— 2(eaotel — erotel) 10, X

[[EQQ +eQf, «¢1Q + EJ{QT}, X] — 2(eg0tel — €10€}) [Py, X]

Since this is true for any X, we have



[GQQ + EEQT, 1@ + EJ{QT] = 2(620'“’61 — 610‘“65) P,

Since €1 and ey are arbitrary, we have

[EQQ, E];QT = ZEQO'MEJ{PM
[egQ, elQT: = —2620“611[’“
€£0Q.6Q] = [€Q,dQ1 =0

Extracting the arbitrary €; and es:

{Qa, QTa} = QUZaPm
{Qa:Qp} ={Q%,,QT3} =0

which is just the SUSY algebra



The interacting Wess—Zumino model

Liree = 8“¢*j0quj + i@b”ﬁ“@uwj -+ f*jfj

5¢j = Glpj (Sgb*J — GTwTj
0o = —i(0hel)o Oudy + €aFj  OUY =i(eot)s 0™ + €l FI
0F; = —ieTE”(’?Mbj SF*) = ia,ﬂb“ﬁ“’e

most general set of renormalizable interactions:
Ling = _%ijijk + Wj]:j + h.c.,

Vg = wjo-‘eagw,f is symmetric under j « k, = WJ*
potential U(¢;, ¢*7) breaks SUSY, since a SUSY transformation gives

oU = %ewj + gper €l

which is linear in v, and Y1 with no derivatives or F dependence and
cannot be canceled by any other term in 0.L;,;



require SUSY

Jjk jk
5£int|4—spinor — ; 88‘/2 (Ewn)(¢j¢k) % %‘:ﬁn (€T¢Tn)(wj¢k) + h.c.
Fierz identity =

() (Vrthn) + (ev) (nth;) + (en) (Yj90r) = 0,

0 Lint|4—spinor vanishes iff 9W7I* /¢, is totally symmetric under the in-
terchange of 5, k,n. We also need

oWk
a¢*n - O

so WI* is analytic ( holomorphic)
define superpotential W'



for renormalizable interactions
W =El¢;+ s M*p;dr + 297" ¢;drn

and M7* y/*" are are symmetric under interchange of indices.
take £/ = 0 so SUSY is unbroken

0Lintle = —”&'ij(%@c wja“eT — W (%@bja“e]t + h.c.

ijau¢k = Oy (%f)

so 0 Lint|s will be a total derivative iff

j — oW
W_3¢j

remalining terms:
0Ling|F 7o = —WI*FFjeihy + %ZV: ePrF;

identically cancel if previous conditions are satisfied
proof did not rely on the functional form of W, only that it was
holomorphic




integrate out auxillary fields

action is quadratic in F
Lr= fjf*j + ijj + W;F*j

perform the corresponding Gaussian path integral exactly by solving its
algebraic equation of motion:

Fj=-—Wpr, Fr=_Wi

J

without auxiliary fields SUSY transformation ¢ would be different for
each choice of W
plugging in to L:

L = 0'¢" 0,0, +iplero,; |
_% (ij%.wk i W*3k¢TJ¢Tk> - WIW;



WZ Lagrangian

S R et A T

as required by SUSY:
V(g,9) =20

interacting Wess—Zumino model:

Lwz = 0"¢"0.¢; + Z-nguau%
— Mg — Mt — V(9,7
I TS

quartic coupling is |y|? as required to cancel the A? divergence in ¢ mass

lcubic coupling|? o< quartic coupling x|M|? as required to cancel the
log A divergence



linearized equations of motion

"0up; = —MILM"™hp+ ...,
i1 Oyp; = M;jkwf+...;
iohO 1T = MIFy + ...

Multiplying 1 eqns by ic”0,, and ic”0,, and using the Pauli identity
we obtain

8/"(%%- — —M; Mnkwk + ...

n

oot = —UME M4

scalars and fermions have the same mass eigenvalues, as required by
SUSY
diagonalizing gives a collection of massive chiral supermultiplets.






SUSY Yang—Mills

under a gauge transformation gauge field, A%, and gaugino field, A%,
transform as:

Sgamae AL = —0, A + g fbe Ab A°
5gauge>\a — gfabC)\bAc

where A® is an infinitesimal gauge transformation parameter, g is the
gauge coupling, and f®¢ are the antisymmetric structure constants of
the gauge group which satisty

T3, Y] = if Ty

for the generators T'* for any representation r. For the adjoint represen-
tation :

(Tzd)ac — ifabc



degrees of freedom

Gauge invariance removes one degree of freedom from the gauge field,
while the eqm projects out another, fermion eqm project out half the
degrees of freedom, so

off-shell on-shell
AZ 3 d.o.t. 2 d.o.f.
A ATe, 4 d.odf. 2 d.o.f.

for SUSY to be manifest off-shell add a real auxiliary boson field D“.

off-shell on-shell
D? 1 d.o.f. 0 d.o.f.



SUSY Yang—Mills Lagrangian

Lsym = —5 F5 P +iXtG# D\ 4+ 5 D* D*
where the gauge field strength is given by
Fo, = 0,A% — 0,A% — gfrcAb AS
and the gauge covariant derivative of the gaugino is
D, A\ = 0,\* — gf“bCAZ)\C

auxiliary field has dimension [D%] = 2



infinitesimal SUSY transtormations

should be linear in € and €'
transform AZ and A% into each other

keep Aj real

N

maintain the correct dimensions of fields with [e] = —

infinitesimal change in D® should vanish when the equations of
motion are satisfied

infinitesimal change in the A\* should involve the derivative of the
A, so that the infinitesimal changes in the two kinetic terms cancel

but gauge transformation of 9, A; different from A* and Fj,

0A}, = 1 [GTEM)\“ )\Taaﬂe]
(a”Eye)a F, + \/5604 D

5)\Ta = 2= (€10"0") s Y, + %EL D
"ot D, A" — D, AT e]




SUSY gauge theories

add a set of chiral supermultiplets
5gauger = igAaTan
for X; = ¢;,4,,F;. gauge covariant derivatives are:
Dﬂ¢j .: M¢j —I— ’LgAZ Tagbi
D,¢* = 0,,0™ —igAj, " T
Dby = 0ups +ig Ay Tp;

new allowed renormalizable interactions:
(@™ TP\, Aae@iTeg)  (¢*T*¢)D*

all are required by SUSY with particular couplings. The first two are
required to cancel pieces of the SUSY transformations of the gauge in-
teractions of ¢ and 1. The third is needed to cancel pieces of the SUSY

transformations of the first two terms.



Lagrangian for a SUSY gauge theory

L = Lsym~+ Lwz — V2g [(¢*TP)A* + Ao (pTT9)| + g(¢*T*¢)D

Lwz is general Wess-Zumino with gauge-covariant derivatives. superpo-
tential must be gauge invariant:

SgangeW = igA* FET ¢y = 0.

infinitesimal SUSY transformations of ¢ and i are have derivatives
promoted to gauge covariant derivatives, F has an additional term re-
quired bythe gaugino interactions:

5¢j = ij
0jo = —i(0PeN) g Dydbj + €. F;
0F; = —ie'o" Db + \fg(Taqﬁ) el \fe



Integrating out auxiliary fields

eqm for the auxiliary field D“:
D = —g¢*T*¢
scalar potential is given by “F-terms” and “D-terms”:
V(b,¢*) = F*F; + %DaDa = WrWi + %92(¢*Ta¢)2
as required by SUSY, is positive definite:

V(g,9") 20
for the vacuum to preserve SUSY V =0 = F;, =0 and D% = 0.



Feynman vertices

Figure 1:

Cubic and quartic Yang—Mills interactions; wavy lines denote gauge
fields.
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Figure 2:

Interactions required by gauge invariance. Solid lines denote fermions,
dashed lines denote scalars, wavy lines denote gauge bosons, wavy /solid
lines denote gauginos.
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Figure 3:

Additional interactions required by gauge invariance and SUSY: (a)
o*YA, (b) ¢*¢D coupling, Note that these three vertices all have the
same gauge index structure, being proportional to the gauge generator
T*. Integrating out (c) the auxiliary field gives (d) the quartic scalar
coupling proportional to 1T*T“.



(a) (b)

----- >
.
(©) / @,
N P K
oo > Re
K v 2N

Figure 4:

dimensionless non-gauge interaction vertices in a renormalizable su-
persymmetric theory: (a) ¢;1;¢ Yukawa interaction vertex —iy™*, (b)
¢i¢;F) interaction vertex iy (c) integrating out the auxiliary ﬁeld
yields, (d) the quartic scalar interaction —iy“™y¥ — required for can-
celling the A? divergence in the Higgs mass
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Figure 5:

dimensionful couplings: (a) 11 mass insertion —iM®, (b) ¢F mixing
term insertion +iM%, (c¢) integrating out F in cubic term, (d) integrating
out F in mass term, (e) ¢?¢*interaction vertex —i M} 75" (f) ¢* ¢ mass
insertion —i M} M*J ensuring cancellation of the log A in the Higgs mass



Supercurrent

using the Noether theorem one finds that the conserved supercurrent is:

= D Nk B,
+(oVTH ;)0 D qﬁ*z— (a oLt AT, g,






Superspace Notation

anticommuting (Grassmann) spinors: 0, 84 = 0! . for a single com-
ponent Grassmann variable n we have:

[dn=0,[ndn=1

two-component Grassmann spinor:

{04,054} =0
define:
A6 = —id@o‘dﬁﬁeag
d?0 = —idé@dﬁ_ﬁ-edﬁ
d*0 = d?0d?0
Then

[ d2662

[d?06070, = —% [ d0“d8Penp30° €507
— 1 (€030"7 €5707 — €430 €5, 07P)

— 2 (€ap€sa + €50€ap) = —F€ap€5a
1



and for arbitrary spinors x and 1 we have
J 20 (x0)(0) = —5(x3)
define a “superspace coordinate”
Yyt =zt — ol

Then we can assemble the fields of a chiral supermultiplet into a chiral
superfield:

O(y) A(y) + V20U (y) + 0>F
$(x) — i00"00,¢(x) —
O

+V20(x) + 567

F)
10°020%¢()
V(x)oh + 02 F(x)

second line follows by Taylor expanding in Grassmann variables 6 and 6



SO

superspace oUSY Lagrangians

o 1 i00180,6% — 182027
Jdiooie = [d' ( V2001 — 00,10 + T
b— 00106 — L6200
( +1/200) + WHQ uwa“9+92f>
= FF 0000 1 ilo" Oy
—50"(¢*0u¢ + 0,90"d) + 50, (1T )

[d*2d*0®T® = [d*x Lireo

)



Superpotential

[d2OW(®) = [d?0 (W (P)|g=o + 0T +92W2 = [ d*06*W; i
= W, ]—"“ — 1Wab¢a¢ — 0u(5 Wa928“gba — S5 Wheat0)

[d*zd?O W (®) + h.c. = [ d*x Lin
product of chiral superfields is also a chiral superfield

SUSY variation of the #? component of a chiral superfield is a total
derivative

[ d*z d?0W is always SUSY invariant



Kahler function
[diz d*OK (DT, ®)

where K is real give kinetic and other (in general non-renormalizable)
Interactions

SUSY variation of the #2602 component of any superfield is a total deriva-
tive



Real Superfield

real superfield contains, in addition to the vector supermultiplet, an
auxiliary field D®, plus three real scalar fields and an additional Weyl
spinor. In Wess—Zumino gauge the extra scalars and spinor vanish, sim-
plifies to:

Ve =00H0A% + 620NT" + 020\ + 56%0°D*
In the Wess—Zumino gauge we have:

vevt = 1p2g2 A Al
Vavbvc —

-



Extended gauge invariance

gauge parameter becomes a chiral superfield, A®

extended gauge transformation can reintroduce (or remove) the extra
scalar and spinor fields:

exp(T?V*) — exp(T*A") exp(T*V*) exp(T*A%)
SO
Ve — Vet A+ AT+ O(V*AY)

chiral superfield ® transforms under the extended gauge invariance
as

d — e I TN P



“field strength” chiral superfield

superspace derivatives defined by

Do = 55 —2i(0"0)a g0

9y
Ds = —5g

Then the “field strength” chiral superfield is given by

T*We = —1DyD% T"V'D,et™V"
We = —iXe(y) +0aD%(y) — (6" 0)o F,(y) — (00)o Dy AT (y),
where

pro i
o = 7

(ota? — o¥at)



SUSY Yang—Mills action

f d4a: »CSYM

%fd%: d?0 Wa*We 4 h.c.
= %fd"‘a: d*0 TrTeWwaeee=TVED TVl h.c.

standard gauge invariant kinetic terms:
[d*0 ®TesT" V"
or more generally (to include non-renormalizable interactions):

[d*0 K(®T,e97"V" @)



N =0 SUSY

Weisskopf

chiral symmetry = multiplicative mass renormalization
— a In ( A
myg = Mo + Cf 15,20 11 .

where A is the cutoff

SUSY ensures that the scalar mass is given by the same formula



SUSY dim.less couplings = no A?
divergences

SUSY must be broken in the real world, eg.
W = E%q
gives a scalar potential
V=WW*=FE'E"#0
which breaks SUSY.

We want to break SUSY such that Higgs — top squark quartic coupling
A = |y¢|?. If not we reintroduce a A? divergence in the Higgs mass:

Sm2 o (A — |ye|?)A2



Effective Theory

Grisaru, Girardello

We want an effective theory of broken SUSY with only soft breaking
terms (operators with dimension < 4). Girardello and Grisaru found:

»Csoft — —%(M)\)\a)\a -+ hC) — (mQ);(b*ngz
—(%b;‘:qbqu] + %a”."“qbiqugbk + h.c.)
—LelF 67 60 + €' + e
e'¢; is only allowed if ¢; is a gauge singlet The cZ ¥ term may introduce
quadratic divergences if there is a gauge singlet multiplet in the model.
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Figure 6:

Additional soft SUSY breaking interactions: (a) gaugino mass M},
(b) non-holomorphic mass m?, (c¢) holomorphic mass b/, (d) holomorphic
trilinear coupling a**, (e) non-holomorphic trilinear coupling ¢ ¥ and

(f) tadpole e’.



SPUrions
fictitious background fields that transform under a symmetry group

“spontaneously” breaks symmetry

chiral superfield ® with a wavefunction renormalization factor Z

Take Z to be a real SUSY breaking spurion field
Z =1+b6%+b*0% + c6%0?
[ d*6 ZOT® = Liree + bF*p + b*d*F + cd*o

integrate out the auxiliary field F:
[ d*0 Z3T® = 046" 0,6 + ihTTHpth + (¢ — [b]?) 9" ¢

soft SUSY breaking mass: m? = [b|? — ¢



Superpotential spurions

62 component spurions in Yukawa couplings, masses, and the coefficient
of W, W< generate a, b, and M) soft SUSY breaking terms

Lot = —3(MAN + hc) — (m?)ip g,
—(3 ”@%% + 2a9% ;01 + h.c.)
—LP 5 pi01 + €l + hec.

The c term requires a term like
[d*0C7* 01D ®y + h.c.

0 _
where C?" has a nonzero §%6? component



