Introduction to AdS/CFT



D-branes

Type IIA string theory: Dp-branes p even (0,2,4,6,8)

Type IIB string theory: Dp-branes p odd (1,3,5,7,9)



10D Type 11B

two parallel D3-branes
low-energy effective description: Higgsed N' = 4 SUSY gauge theory



T'wo parallel D3-branes

lowest energy string stretched between D3-branes: m oc LT
L — 0 massless particle C 4D effective theory

Dirichlet BC’s — gauge boson and superpartners

D3-branes are BPS invariant under half of the SUSY charges

= low-energy effective theory is A/ = 4 SUSY gauge theory

six extra dimensions, move branes apart in six different ways
moduli space < (¢) six scalars in the N' =4 SUSY gauge multiplet

moduli space is encoded geometrically



N parallel D3-branes

low-energy effective theory is an N = 4, U(N) gauge theory
N? ways to connect oriented strings

Moving one of the branes — mass for 2N — 1 of the gauge bosons
« (@) breaks U(N) — U(N — 1)

gauge coupling related to string coupling g

92 — 477'95



Type IIA D4-branes

5D gauge theory, compactify 1 dimension

(a)

NS5

NxD4

D4-brane shares three spatial directions with the 5-brane

_____________

gi =

9
L

(b)

NS5

NxD4

NS5’



Type IIA D4-branes

3D end of the D4-brane has two coordinates on the 5-brane
< two real scalars

two sets of parallel BPS states: D4-branes and 5-branes
each set invariant under one half of the SUSYs
low-energy effective theory has N’ = 2 SUSY

two real scalars < scalar component of N' = 2 vector supermultiplet

moduli space is reproduced by the geometry



D-brane constructions

(a) (b)

NS5 NS5 NS5 NS5’

_____________

NxD4 NxD4

(a) N'=2 SUSY (b) non-parallel NS5-branes <+ N =1 SUSY

rotate one of the NS5-branes — D4-branes can’t move < massive scalar
breaks N =2 — N =1 SUSY
the non-parallel NS5-branes preserve different SUSY's



Adding Flavors

F' D6-branes || one of NS5-branes along 2D of the NS5 1 D4-branes

(a) (b)
FxD6 FxD6

NS5 i NS5’ NS5 i NS5’

AlliadiRRR T Ne

(a) SU(N) N =1, F flavors. (b) Higgsing the gauge group

strings between D4 and D6 have SU(N) color index and SU(F') flavor

index, two orientations — chiral supermultiplet and conjugate



Adding Flavors

Moving D6 in L direction, string between D6 and D4 has finite length
— adding a mass term for flavor

break the D4-branes at D6-brane and move section of the D4 between ||

NS5 and D6-brane < squark VEV (¢) # 0, (¢) # 0 < Higgsing

counting # of ways of moving segments
— dimension of the the moduli space = 2NF — N?
correct result for classical U(N) gauge theory



Seiberg Duality
(a) move NS5’ through the D6 (b) move NS5’ around the NS5

(a) (b)
FxD6 FxD6
N . ONSS i
NS5 NS5° NS5

NxD4 (F—N)xD4 =
FxD4 i FxD4: | | |

N D4s between NS5s join up, leaving (F' — N) D4s, #R — #L fixed
— SU(F — N) N =1 SUSY gauge theory with F' flavors
D4s between || NS5 and D6-branes move without Higgsing SU(F — N)
# ways of moving = F? complex dof < meson in classical limit
dual quarks < strings from (F' — N) D4s to F' D4s
stretched to finite length < meson VEV — dual quark mass



Lift to M-theory

to get quantum corrections
Type ITA string theory < compactification of M-theory on a circle

gs = (RyoMp))3/?

finite string coupling g5 < to a finite radius Rg

eg. N =2 SU(2) gauge theory < two D4-branes between || NS5s
NS5 is low-energy description of Mb5-brane

D4 is low-energy description of Mb5-brane wrapped on circle



Lift to M-theory

D4s ending on NS5s — single M5

M-theory curve describes a 6D space, 4D spacetime
remaining 2D given by the elliptic curve of Seiberg-Witten
larger gauge groups, more D4-branes, surface has more handles



M-theory brane bending

Mbs not ||, bend toward or away from each other depending on the
# branes “pulling” on either side
move one D4 < Higgsing by a v = (¢)
probe g(v)

g =%

bending of Mb-brane <+ to running coupling
at large v bending reproduces (3

M-theory not completely developed
not understood:
get quantum moduli space for N'=1 SU(N) rather than U(N)

dimension of dual quantum moduli space reduced
from F? to F'? — ((F — N)? —1)



N D3 branes of Type 11B

E < 1/, effective theory:

Seff — Sbrane + Sbulk + Sint

Sprane = gauge theory
Spuik = closed string loops = Type 1IB sugra + higher dimension ops
10D graviton fluctuations h:

gMN = NMyuN + KB N
where kg ~ gsa’?, 10D Newton’s constant, has mass dimension -4

Shulk = ﬁ [GR ~ [(Oh)* + kup(Oh)*h + . ..

E — 0 = drop terms with positive powers of xiig, leaves kinetic term
all terms in Sj,t can be neglected — free graviton

Equivalently, hold F, g5, N fixed take o’ — 0 (kg — 0)
— free I1IB sugra and 4D SU(N), N' =4 SUSY gauge theory



Supergravity Approximation

low-energy effective theory: Type IIB supergravity with N D3-branes,
source for gravity, warps the 10D space
solution for the metric:

ds* = f71/2 (—4dt2 + da? + do3 + da3) + f1/2 (dr? 4 r2dQ3)
f = 1+ (%) . R*=4mg,a’*N

where r is radial distance from branes, and R is curvature radius
observer at r measures red-shifted F,, observer at »r = oo measures

b = vV gtt E’r — f_1/4E'r

E — 0 < keep states with » — 0 or bulk states with A — oo

two sectors decouple since long wavelengths cannot probe short-distances
agreement with previous analysis

states with r — 0 < gauge theory, bulk states <« free Type IIB sugra



Near-Horizon Limit

study the states near D-branes, »r — 0, by change of coordinate
U= —

hold finite as o’ — 0
low-energy (near-horizon) limit:

ds? u? 2 2 du? 2
- = dt® + dx7) + \/4mgs N (—2 + df) )
o I N ( ) g ” 5

4dmrgs N

metric of AdSs x S°
identify the gauge theory with supergravity near horizon limit

Maldacena’s conjecture: Type IIB string theory on AdSs x S° = 4D
SU(N) gauge theory with N' =4 SUSY, a CFT

so much circumstantial evidence, called AdS/CFT correspondence



Supergravity Approximation

Sugra on AdSs x S° is good approximation string theory when
gs is weak and R/a/'/? is large:
9s <1, gsN>1
Perturbation theory is a good description of a gauge theory when

<1, ¢?°N«< 1

AdS/CFT correspondence:
weakly coupled gravity < large NN, strongly coupled gauge theory

hard to prove but also potentially quite useful



AdS5 X S5

S° can be embedded in a flat 6D space with constraint:
R? = Z?:1 Y;'Z ;

S° space with constant positive curvature,
SO(6) isometry < SU(4)r symmetry of N' = 4 gauge theory

AdSs can be embedded in 6D:
ds? = —dX2 —dX2+ Y1 dX?
with the constraint:
R? = X3 + X2 - (20, X?)

AdS5 space with a constant negative curvature and A < 0
isometry is SO(4,2) «<» conformal symmetry in 3+1 D



AdS Space

hyperboloid embedded in a higher dimensional space



AdSs

change to “global” coordinates:

Xg = Rcoshpcost Xs5= RcoshpsinT
X; = RsinhpQ;, i=1,...,4, >. Q=1

ds? = R?*(— cosh” pdr? + dp? + sinh® p d?)

periodic coordinate 7 going around the “waist” at p =0
while p > 0 is the | coordinate in the horizontal direction

to get causal (rather than periodic) structure

cut hyperboloid at 7 = 0, paste together an infinite number of copies so
that 7 runs from —oo to 400

causal universal covering spacetime



AdSs: “Poincaré coordinates”

~ (1+u*(R*+ 2% —¢?)), X5=Rut
Ruwz;, i=1,...,3; Xa4=5 (1—u?(R?—2+1?))

Xo
X;

ds? = R? (dui +u(—dt? + di:’2))

cover half of the space covered by the global coordinates
Wick rotate to Euclidean

T—Tg=—1T, or t - tg = —1t

ds?, = R? (Cosh2 pdr? + dp? + sinh” pdQ?)
= RBP4 ul(dt] + di?))



AdSs: “Poincaré coordinates”

another coordinate choice (also referred to as Poincaré coordinates)

u =

1 _
P 554_tE

metric is conformally flat:
ds2, = & (d22 +> y dm2)
E = 22 i=1 &Ly

boundary of this space is R* at z = 0, Wick rotation of 4D Minkowski,
and a point z = o0



AdS/CFT correspondence

partition functions of CFT and the string theory are related

(exp [ d*2do(2)O0(2))crr = Zistring [#(2, 2)]2=0 = do(2)]
O C CFT « ¢ AdSs field, ¢g(x) is boundary value

For large N and ¢?N, use the supergravity approximation

Zstring ~ G_Ssugra[¢(x’z)|z=0:¢0 ()]



CE'T Operators

O c CFT < ¢ AdSs field

scaling dimensions of chiral operators can be calculated from R-charge

primary operators annihilated by lowering operators S, and K,
descendant operators obtained by raising operators (), and P,
interested in the mapping of chiral primary operators

N = 4 multiplet SU(4)g representations:
(A4, 1), (Aa, O), (4, E



Chiral Primary Operators

Operator SU(4)r Dimension
THY 1 4
|
Jh - 3
Te(®7 ... ®%k), k>2 | (0,k,0) HH, , k
Tr(WoW,@0 .. | (2,k,0) [, £+, L] k+3
Tr FFHYF,,, + ... (0,%,0) 1, H, k+ 4




Corresponding Type 1IB KK modes

harmonics on S°, masses determined by SU(4)g irrep

Spin SU(4)r ~ SO(6) m? R? Operator
2 1, H - k(k+4), k>0 k=0, TH
1 :|,_ |,_ oo (k=D(k+1), k>1 k=1, JV
0 , , _— k(k—4), k>2 Tr(®0 ... &)
0 | - .. (k=1D(k+3), k>0 Tr(WoW,0..0l)
0 1L,HH] k(k+4), k>0 Tr gFFFYF,y, + ..

lowest states form graviton supermultiplet of D = 5, gauged sugra



Waves on AdSs

massive scalar field in AdSs:

S =1 [d*axdz/9(g" 0,00, ¢ + m?$?)
Using the conformally flat Euclidean metric
ds% = & (d22 3 dxf)
and assuming a factorized solution:

¢z, 2) = e f(p2)

eqm reduces to

20, (50.f) — 2°p*f — m?R?f =0



Waves on AdSs

Writing y = pz the solutions are modified Bessel functions:

f(y):{ Iao(y) ~ y>, asy—0

v’ Ka_2(y) ~ y* 2, asy—0

Y

A is determined by the mass

A =2+ V4 +m2R2

y?Ia_o(y) blows up as y — oo: not normalizable

rT— 2, P pp
then the scalar field transforms as
d(x,z) — pt e f(pz)

conformal weight 4 — A, < CFT O must have dimension A

bulk mass, m < scaling dimension, A



Propagators on AdSs

propagate boundary ¢q into the interior:

A

gb(x,z) — Cfd4$/ (22—|—|:—x’|2)A gbo(fEl)

for small z the bulk field scales as z*~2¢q(x)

ZA—l

0.6(x,2) = A [ dh' Eoiex o) + O(z2+)

integrating action by parts + eqm yields:

(%)

$ = L [dad:05 (50050) = § [ d'a (6050) |.=o

Using the boundary condition ¢(z,0) = ¢g(x) and (*)

q — cR3A fd433d4£13/ ¢o(z)po(z”)

2 |z —x’ |24




Two-Point Function of CFT

for corresponding operator O derived from

<eprd433¢0(fC)O(£B)>CFT ~ e_Ssugra[qb(ﬂfaZ)|z=0=¢0(:1:)]

_ 5%S _ _cR*A
(O@)0@) = s5wreE) = mowls

correct scaling for dimension A in 4D CFT



Dimension < Mass

In Ade+1I

scalars :

AN
spinors : A = 2(d + 2|m|R)
Ay

vectors :

p-forms: Ax % (d £ +/(d — 2p)? + 4m?R?)

massless spin 2: A =4d

for scalar requiring A4 is real = Breitenlohner—Freedman bound

2
— 4 < m?R?



Dimension < Mass

relation is expected to hold for stringy states:

S

mN%HAle/‘l
Pl

large N and large ¢° N « very large dimension M
neglected in the supergravity approximation



(N + 1) D3-branes

SU(N + 1), N =4 SUSY gauge theory
pull one of the branes distance u away SU(N + 1) — SU(N)
stretched string states «» massive gauge bosons

u

mW:?

0+ of SU(N)
u — 00 < static quark

consider static quark—antiquark pair at distance » on 0AdSs
minimum action: string stretching from the quark to the antiquark



Wilson Loops
n AdS5
(W(C)) = e

where D is surface of minimal area 0D = C', surface D «< to the world-
sheet of the string

a(D) is a regularized area
subtract a term o< the circumference of C' <» action of the widely sepa-
rated static quarks

If C' is a square in Euclidean, width r and height T (along the Eu-
clidean time direction)

W(C) = eV



Nonperturbative Coulomb potential

Using the conformally flat Euclidean metric

dsy, = R (dz2 + 22121 dxf)

g
scale size of C by
Li — P Ty
keep a(D) fixed by scaling D:
T;— pr; Z— Pz

a(D) is independent of p, a(D) ot C' ~ p?

V(r) ~ - YEN

T

1/r behavior required by conformal symmetry
v/ g?N behavior is different from perturbative result



Breaking SUSY': finite temperature

take Fuclidean time (tp = —it) to be periodic:
tp ~tg + B e’itE N e—ﬁE

— finite temperature 4D gauge theory
periodic boundary conditions for bosons
antiperiodic boundary conditions for fermions
zero-energy boson modes, no zero-energy fermion modes
— SUSY is broken
Scalars will get masses from loop effects
gluons are protected by gauge symmetry
low-energy effective theory is pure non-SUSY Yang-Mills

high-temperature limit lose one dimension
— zero-temperature, non-SUSY, 3D Yang-Mills



AdS Finite Temperature

in AdS there is a at high T partition function dominated by a black
hole metric with a horizon size b = w1’

—1 o
ds” _ (u2 — i) du? + (u2 — 2—42) dr? + u?dxtdz’

blackhole horizon < confinement in gauge theory



Finite Temperature and Confinement
(W(C)) = e

in black hole metric bounded by the horizon, u = b
minimal area of D is area at the horizon

a(D) = R?*b?* area(C)
— area law confinement
V(r) = R*b*r
string tension is very large

o~ R?b? ~ \/g2N o'b?



Glueballs

massless scalar field ® in AdSs, dilaton which couples to Tr F?
Tr F'? has nonzero overlap with gluon states

® — 07T glueball

with AdS black hole metric:

o, [\@guva,,@] =0, O = flu)ek

u_lﬁ (<u4 — b4) u%) —k2f=0

for large u, f(u) ~ u* where m? = 0 = A\(\+4) so as u — oo either
f(u) ~ constant or ~ u~*%.
second solution is normalizable solution
need f to be regular at u = b = df /du is finite

wave guide problem, bc in the direction L to k



Glueball Mass Gap

no normalizable solutions for k2 > 0
discrete eigenvalues solutions for k? < 0
3D glueball masses

M? = —k? >0

mass gap as expected for confining gauge theory



4D Glueball Masses

M-theory 5-brane wrapped on two circles
one circle is small — Type IIA D4-branes on a circle
problem is that the supergravity limit ¢ — 0, g N — 0o # gauge theories
we usually think about.



Strong coupling problem

QCDg3 intrinsic scale:
giN = g°NT

hold fixed as T' — oo need g°N — 0

QCDy intrinsic scale:

2
Aqep = exp (1_12;2%) T

hold fixed as T'— oo need g°N — 0
supergravity calculation works when extra SUSY states have masses
~ glueballs



4D Glueball Masses

consider M5-branes wrapped on two circles where the M5-branes have
some angular momentum a

3ug 9ug ub A

ds?, = ZRMABALZL 4 de? 4 da? 4 dad 4 da?) + A7 (1 — 48 )62
ITA 0 1 2 3 2

2A
4 U u
w1 -39

i 4 du? . d(92‘|‘ A Sin2(9d§02
0

2 2
+ i cos? 003 — 2220 sin? 9dBydip

4 ~ 4

A=1-90  A=1-9
=0

4

_ U 6 4. 2 6

A: u4 _Ola4 ’ UH—a UH—’LLO
H 3

horizon uy, dilaton background e?®, temperature Ty

3v3, 3A1/2 _
2 _ 81 A°X\°u”A 1 R:(QT('TH) 1 A

27 ug N2 » —

€

3’11,0

when a/ug > 1 R — 0 shrinks to zero



4D Glueball Masses

0T glueballs « TrEF'F, solve

O |\/9e 2% g 9,®] =0

0~ glueballs « TrFF, solve

% [\/ggﬂpgw(ﬁpAa — 8014/))} =0

discrete sets of eigenvalues, functions of a



4D Glueball Masses: a — o¢

state lattice N =3 SUGRA a=0 SUGRA a —

0T 1.61+£0.15  1.61 (input) 1.61 (input)
0tT* 248 4+0.23 2.55 2.56
0-F  2.59 +0.13 2.00 2.56
0~*t*  3.64 +£0.18 2.98 3.49

circle KK modes decouple = real 4D gauge theory
0" glueball mass ratios change only slightly
S* KK modes do not decouple

a/ug > 1, approaches a SUSY limit



4D Glueball Mass

257 Lattice Supergravity
2 ot o+

Lattice Supergravity
1.5

ot 0++* ot o "
1
0++ O++

05}

masses are within 4% of the lattice results
strong-coupling expansion off by between 7% and 28%
SUGRA results are much better than we have any reason to expect



Breaking SUSY: Orbifolds

Type IIB on AdSs x S° — N =4CFT
KK mode operator
l orbifolding S° l
AdSs x S°/T — N < 4CFT
invariant KK mode invariant operator

construct N' = 1 SUSY CFTs by orbifolding N' = 4with discrete
group I' embedded in SU(N) using an N-fold copy of the regular repre-

sentation
« Type IIB string theory on orbifold AdSs x S°/T’
For N =1, the SO(6) ~ SU(4) R isometry of S° is broken to U(1)r x I'



/5 Orbitold

x 1,23 _, o2mi/3 x1,2,3

Y

X parameterize the R°1 to the D3-branes

SU(N) SU(N) SU(N)| UQ1)g
U ] [] 1 -
% 1 O O 2
W O 1 O 3

where ¢+ = 1,2, 3, SU(3) global symmetry is broken by the superpotential
orbifold fixed point X* = 0

volume of S° is nonzero, manifold is non-singular

supergravity description still applicable



/5 Orbitold

KK modes of supergravity on AdSs x S°/Z3 are Z3 invariant

for example, the KK mode
Spin SU(4)r ~ SO(6) m? R? Operator

0 : s k(E—4), k>2 Tr((I)Il...(I)Ik)

with k£ = 3, = 50 of SU(4)r couples to a dim 3 chiral primary op
SU(4)gr — SU(3) x U(1)g gives:

50 — 102 + 1—0_2 + 152/3 + 1—5_2/3

Z3 on 3 of SU(3): (z!,22,2%) — (e2™/3g1, e2m/352, =4mi/33)

10 is contained in 3 X 3 X 3 = 10 is invariant under the Z3 projection,
10 has correct R-charge

10 chiral primary operators Tr U V*2 W% symmetric in i



/5 Orbitold

Spin | SU(4)r ~ SO(6) m?R? Operator

0 1L,HHH, - k(k+4), k>0 Tr¢"FPF,, + ..

k = 0, dilaton transforms as 1 invariant under the Z3 projection
couples to the marginal primary operator 7 | Tr F?

result is independent of I'
Tr F'? is marginal in any theory obtained by I' projection on N = 4



