
Conventions for spinor helicity formalism
Elvang pre-SUSY summer school lectures August 2015

The conventions of these notes follow those in Srednicki’s QFT book.

1 Metric and γ-matrix conventions

We use a “mostly-plus” metric, ηµν = diag(−1,+1,+1,+1) and define

(σµ)aḃ = (1, σi)aḃ , (σ̄µ)ȧb = (1,−σi)ȧb (1.1)

with Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.2)

Two-index spinor indices are raised/lowered using

εab = εȧḃ =

(
0 1
−1 0

)
= − εab = − εȧḃ , (1.3)

which obey εabε
bc = δa

c.

We list the following properties

(σ̄µ)ȧa = εabεȧḃ(σµ)aḃ , (1.4)

(σµ)aȧ(σµ)bḃ = −2εabεȧḃ , (1.5)(
σµσ̄ν + σν σ̄µ

)
a
c = −2ηµνδa

b , (1.6)

Tr (σµσ̄ν) = Tr (σ̄µσν) = − 2ηµν . (1.7)

Define γ-matrices:

γµ =

(
0 (σµ)aḃ

(σ̄µ)ȧb 0

)
, {γµ, γν} = −2ηµν , (1.8)

and

γ5 ≡ iγ0γ1γ2γ3 =

(
−1 0
0 1

)
, L =

1

2
(1− γ5) , R =

1

2
(1 + γ5) . (1.9)

For a momentum 4-vector pµ = (p0, pi) = (E, pi) with pµpµ = −m2, we define momentum
bi-spinors

paḃ ≡ pµ (σµ)aḃ , pȧb ≡ pµ (σ̄µ)ȧb . (1.10)

For example,

paḃ =

(
−p0 + p3 p1 − ip2
p1 + ip2 −p0 − p3

)
(1.11)

Taking the determinant of this 2×2 matrices gives

det p = −pµpµ = m2 . (1.12)
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2 Selected Feynman rules

Here we list a few Feynman rules that will be used in the first lecture:

• External scalar: 1.

• External outgoing fermion: ūs(p).

• External outgoing anti-fermion: vs(p).

• Gluon propagator (Feynman or Gervais-Neveu gauge):
δabηµν
P 2

.

• gluon-quark-antiquark vertex: q̄ /Dq −→ ig√
2
γµT aij .

• gluon-squark-antisquark vertex: |Dq̃|2 ⊃ ig√
2

(pj − pi)µT aij .

Here the 1/
√

2 is included to compensate for our choice of normalization of the gauge group
generators, which is Tr(T aT b) = δab.

3 Massless particles

3.1 Spin-1/2: Angle and square spinors

In momentum space, the Dirac equation for a massless 4-component spinor is

/p v±(p) = 0 , ū±(p) /p = 0 . (3.1)

The Feynman rules for a massless external outgoing fermion is u± (and antifermions v±). The
subscript ± indicates the helicity h = ±1/2. Crossing gives u± = v∓ and v± = u∓.

We write the two independent solutions to the Dirac equation (3.1) as

v+(p) =

(
|p]a
0

)
, v−(p) =

(
0
|p〉ȧ

)
, (3.2)

and

u−(p) =
(

0 , 〈p|ȧ
)
, u+(p) =

(
[p|a , 0

)
. (3.3)

The angle- and square spinors are 2-component commuting spinors (think 2-component vec-
tors) which satisfy the massless Weyl equation,

pȧb|p]b = 0 , paḃ|p〉
ḃ = 0 , [p|b pbȧ = 0 , 〈p|ḃ p

ḃa = 0 . (3.4)

Raising and lowering their indices is business as usually:

[p|a = εab|p]b |p〉ȧ = εȧḃ〈p|ḃ . (3.5)

For complex-valued momenta pµ, we regard the angle and square spinor solutions to be
independent. However, for real momenta, the solutions are related via the Dirac conjugate
ψ, defined as:

ψ ≡ ψ†γ0 . (3.6)
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For real momenta this gives

[p|a = (|p〉ȧ)∗ and 〈p|ȧ = (|p]a)∗. (3.7)

Note that us(p) are eigenstates of the L- and R-projections:

Lu−(p) = u−(p) , R u−(p) = 0 , R u+(p) = u+(p) , L u+(p) = 0 . (3.8)

The spin sum completeness relation with m = 0 reads u−u−+u+u+ = −/p. In spinor helicity
notation this is

−/p = |p〉[p|+ |p]〈p| . (3.9)

One can read off from this relation that

paḃ = − |p]a 〈p|ḃ , pȧb = − |p〉ȧ [p|b , (3.10)

This should not shock you. After all, you learned in your algebra class that if a 2 × 2
matrix has vanishing determinant, it can be written as a product of two 2-component vectors:
paḃ = −λa λ̃ḃ. In fact, this is often the starting point of introductions to the spinor helicity
formalism.

3.2 Spinor brackets

For two light-like vectors pµ and qµ, we define spinor brackets

〈p q〉 = 〈p|ȧ |q〉
ȧ , [p q] = [p|a |q]a . (3.11)

Since indices are raised/lowered with the anti-symmetric Levi-Civitas (1.3), cf. (3.5), these
products are antisymmetric:

〈p q〉 = −〈q p〉 , [p q] = −[q p] . (3.12)

All other “inner products” vanish, e.g. 〈p|q] = 0.

For real momenta, the spinor products satisfy [p q]∗ = 〈q p〉.

Using (1.7) one finds

〈p q〉 [p q] = 2 p · q = (p+ q)2 = − spq. (3.13)

In the last equality, we defined the Mandelstam variable spq.

It is also useful to note the following properties:

[q|γµ|p〉 = 〈p|γµ|q] , (3.14)

[q|γµ|p〉∗ = [p|γµ|q〉 (for real momenta) , (3.15)

〈p1|γµ|p2]〈p3|γµ|p4] = 2〈p1p3〉[p2p4] . (3.16)

We often use 〈p|P |q] ≡ Pµ〈p|γµ|q] and obvious generalizations thereof. Note that for P 2 6= 0
we may write 〈q|P |q] = 2P · q.

3



In amplitude calculations, momentum conservation is imposed on n-particles as
∑n

i=1 p
µ
i =

0 (consider all particles outgoing). This is encoded in the spinor helicity formalism as

n∑
i=1

|i〉[i| = 0 or

n∑
i=1

〈qi〉[ik] = 0 (3.17)

for any light-like vectors q and k. For example, you can (and should) show that for n = 4
momentum conservation implies 〈12〉[23] = −〈14〉[43] and 〈12〉[12] = 〈34〉[34].

The Schouten identity is a fancy name for a rather trivial fact: three vectors in a plane
cannot be linearly independent. So if we have three 2-component vectors |i〉, |j〉, and |k〉,
you can write one of them as a linear combination of the two others:

|k〉 = a|i〉+ b|j〉 for some a and b. (3.18)

Dot in spinors 〈·| and form antisymmetric angle brackets to solve for the coefficients a and
b. Show that (3.18) can then be cast in the form

|i〉〈jk〉+ |j〉〈ki〉+ |k〉〈ij〉 = 0 . (3.19)

This is the Schouten identity. It is often written with a fourth spinor 〈q| “dotted-in”:

〈qi〉〈jk〉+ 〈qj〉〈ki〉+ 〈qk〉〈ij〉 = 0 . (3.20)

A similar Schouten identity holds for the square spinors.

3.3 Spin-1: Polarizations

In the spinor helicity formalism we write polarization vectors as

εµ−(p; q) = −〈p|γ
µ|q]√

2 [p q]
, εµ+(p; q) = − 〈q|γ

µ|p]√
2 〈p q〉

, (3.21)

where q 6= p denotes an arbitrary reference spinors.

The choice of q simply encodes the gauge freedom of shifting the polarization vector by any
number times the momentum of the particle:

εµ(p) = ε̃µ(p) + C pµ . (3.22)

Now we have the basic spinor helicity tools needed to calculated scattering amplitudes of
massless particles in 4d.
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