Conventions for spinor helicity formalism
Elvang pre-SUSY summer school lectures August 2015

The conventions of these notes follow those in Srednicki’s QF T book.

1 Metric and y-matrix conventions

We use a “mostly-plus” metric, 7, = diag(—1,+1,+1,+1) and define
(0")gp = (1,0 4p » (0% = (1, —5")* (1.1)

with Pauli matrices

do (V) () () 0

Two-index spinor indices are raised /lowered using

8ab — Sdb — (_01 é) = —€u = —gai), (13)

which obey €4, = 6,°.

We list the following properties

(") = a0, (L4)
(Gu)aa(au)bi) = —2eqbE4j (1.5)
(06" +0¥5") ¢ = —2ms,0, (1.6)
Tr (o#c") = Tr(c%o”) = —2n"". (1.7)
Define y-matrices:
0 ot) i v v
"= < ()b ( 0)"’" ) o T =2 (1.8)
and
. -1 0 1 1
v =i’y = : L=-(1-7), R=z(1+7). (1.9)
0 1 2 2
For a momentum 4-vector p* = (p°,p%) = (E,p') with p#p, = —m?, we define momentum
bi-spinors
Py = Pu (U“)ab, pab = py (5“)‘“’. (1.10)
For example,
0., .3 1 _ ;2
—p +p° p —wp
;= . 1.11
Pai < plip?  —p0 = p > (1.11)

Taking the determinant of this 2x2 matrices gives

detp = —p''p, = m?. (1.12)



2 Selected Feynman rules

Here we list a few Feynman rules that will be used in the first lecture:
e External scalar: 1.
e External outgoing fermion: u4(p).

e External outgoing anti-fermion: vs(p).

(5ab
e Gluon propagator (Feynman or Gervais-Neveu gauge): PZ” Y
e gluon-quark-antiquark vertex: gllq — %’y“Ti‘;.

)
e gluon-squark-antisquark vertex: |Dg|> D —g(pj —p)'Tys

V2

Here the 1/4/2 is included to compensate for our choice of normalization of the gauge group
generators, which is Tr(7TT?) = §9°.

3 Massless particles

3.1 Spin-1/2: Angle and square spinors

In momentum space, the Dirac equation for a massless 4-component spinor is

pv(p) =0, us(p)p=0. (3.1)

The Feynman rules for a massless external outgoing fermion is u4 (and antifermions vy ). The
subscript + indicates the helicity h = £1/2. Crossing gives utx = v+ and U4 = Ux.

We write the two independent solutions to the Dirac equation (3.1) as

v =) ew=( ) (3.2)

u(p) = (0, (pla), y(p) = ([pI*,0). (3.3)

The angle- and square spinors are 2-component commuting spinors (think 2-component vec-
tors) which satisfy the massless Weyl equation,

and

PPl =0, pulp)’=0, [p’pa=0, (p;p"*=0. (3.4)
Raising and lowering their indices is business as usually:
[p|* = €®lply )" = ™ pl;- (3.5)

For complezx-valued momenta p", we regard the angle and square spinor solutions to be
independent. However, for real momenta, the solutions are related via the Dirac conjugate
1, defined as:

P = iy, (3.6)



For real momenta this gives
pl* = (P and  (pla = (Ipla)" (3.7)

Note that us(p) are eigenstates of the L- and R-projections:

Lu_(p)=u-(p), Ru-(p)=0,  Ruy(p)=us(p), Lus(p)=0. (3.8)

The spin sum completeness relation with m = 0 reads u_u_ +u4u4 = —p. In spinor helicity
notation this is

—p = Ip)pl+ [plpl- (3.9)

One can read off from this relation that

P = —Ipla(plj, ™ = —|p)*p’, (3.10)

This should not shock you. After all, you learned in your algebra class that if a 2 x 2
matrix has vanishing determinant, it can be written as a product of two 2-component vectors:
Pyp = —Aa ;\b' In fact, this is often the starting point of introductions to the spinor helicity
formalism.

3.2 Spinor brackets

For two light-like vectors p* and ¢*, we define spinor brackets

pa) = (pl,la)", pal = [pl*lqla- (3.11)

Since indices are raised/lowered with the anti-symmetric Levi-Civitas (1.3), cf. (3.5), these
products are antisymmetric:

(pg) =—(ap), [pql = —lap]. (3.12)

All other “inner products” vanish, e.g. (p|q] = 0.
For real momenta, the spinor products satisfy [p¢]* = (g p).

Using (1.7) one finds

(pa)lpal = 2p-¢ = (P+9)? = —spg- (3.13)
In the last equality, we defined the Mandelstam variable sp,.

It is also useful to note the following properties:

[al*Ip) = (pIv*ld], (3.14)
g |p)* = [p*le) (for real momenta) , (3.15)
(p1[7"|p2l(p3|vulpa] = 2(p1ps)[papd]. (3.16)

We often use (p|P|q] = P,(p|7*|q] and obvious generalizations thereof. Note that for P? # 0
we may write (¢|Plq] = 2P -q.



In amplitude calculations, momentum conservation is imposed on n-particles as y ;- | pt' =
0 (consider all particles outgoing). This is encoded in the spinor helicity formalism as

n

STl =0 or > {gi)|ik] = 0 (3.17)
=1

i=1

for any light-like vectors ¢ and k. For example, you can (and should) show that for n = 4
momentum conservation implies (12)[23] = —(14)[43] and (12)[12] = (34)[34].

The Schouten identity is a fancy name for a rather trivial fact: three vectors in a plane
cannot be linearly independent. So if we have three 2-component vectors |i), |7), and |k),
you can write one of them as a linear combination of the two others:

|k) = ali) + blj) for some a and b. (3.18)

Dot in spinors (-] and form antisymmetric angle brackets to solve for the coefficients a and
b. Show that (3.18) can then be cast in the form

1) (k) + 15) (ki) + [k)(ig) = 0. (3.19)
This is the Schouten identity. It is often written with a fourth spinor (g| “dotted-in”:
{q0) (k) + (a7} (ki) + (qk)(ij) = 0. (3.20)

A similar Schouten identity holds for the square spinors.

3.3 Spin-1: Polarizations

In the spinor helicity formalism we write polarization vectors as

wio oy el TR Cl i)
Ef(pa Q) - \/i[p ] ? +(p7 q) \/§<pq> ’

where g # p denotes an arbitrary reference spinors.

(3.21)

The choice of ¢ simply encodes the gauge freedom of shifting the polarization vector by any
number times the momentum of the particle:

e(p) = &(p) + C'p". (3.22)

Now we have the basic spinor helicity tools needed to calculated scattering amplitudes of
massless particles in 4d.



