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Abstract

We compute the top quark decay rate in the Unhiggs model. In this model, the

longitudinally polarized W ’s are unparticles, which is owed to their Goldstone boson

nature, while the transversely polarized W ’s are not. Thus the fraction of decays with

a longitudinal W emitted is different than in the Standard Model. Comparing this

calculation to CDF data, we are able to rule out some of the Unhiggs model parameter

space. We also use the expected increased accuracy of top decay measurements at the

LHC to anticipate further constraints on the Unhiggs.

http://arxiv.org/abs/1002.1694v3


1 Introduction

Georgi [1, 2] introduced a new approach to studying conformal sectors by specifying the
two-point functions of fields with a scaling dimension between one and two. Since the phase
space for these fields resembles the phase space of a fractional number of particles, Georgi
termed them “unparticles”. Subsequently, efforts were made to gauge unparticle actions
in a consistent way [3] so that unparticles could be given Standard Model (SM) gauge
quantum numbers. This also necessitates the introduction of an IR cutoff to the unparticle
sector [3–5] so that there are no new massless modes, which would dramatically alter low
energy phenomenology. In a previous paper [6], we introduced the Unhiggs as a way to
break electroweak symmetry via an unparticle (see ref. [7,8] for work on related ideas). The
Unhiggs has the same gauge structure as the SM Higgs and has an IR cutoff µ. The effects
of an Unhiggs on precision electroweak measurements have been studied in detail [9], and
the model is consistent with the current data. In [6], we showed that like the SM Higgs,
the Unhiggs unitarizes WW scattering. The Unhiggs also has some advantages over the SM
Higgs. Because the SM Higgs has scaling dimension one, its mass is quadratically sensitive
to the scale of new physics. The fact that electroweak precision tests prefer a low Higgs mass
compared to the TeV scale thus seems somewhat fine-tuned and is sometimes known as the
Little Hierarchy Problem. The Unhiggs, however, has a scaling dimension greater than one
and should thus be less sensitive to the scale of new physics. This was borne out explicitly
in [6], as we showed that the scale of new physics could be pushed above a TeV without
much fine-tuning, thus ameliorating the Little Hierarchy Problem.

In this paper, we would like to begin investigating possible phenomenological bounds
on the Unhiggs model. We are motivated in this direction by a result from Georgi’s first
unparticle paper [1], in which he computes the decay rate of the top quark in a toy model
consisting of the top quark, the up quark and a generic unparticle scalar field with scaling
dimension d. He found that when the scalar field is an unparticle with 1 < d < 2, the
decay rate differs, in some cases dramatically, from the decay rate when the scalar field is
a standard particle with d = 1. In the Unhiggs model, we expect to see something similar
because of the fact that both the physical Unhiggs and the Goldstone bosons are unparticles.
Since the Goldstone bosons are “eaten” by the W± and Z gauge bosons, the longitudinal
components of W± and Z will also exhibit unparticle behavior. This can be seen explicitly
in the form of the gauge boson propagators derived in [6]. Thus, we can use top decay,
t → W+b, to investigate some phenomenological consequences of the Unhiggs model. Since
only the longitudinal component of theW+ is an unparticle, while the transverse components
are just standard gauge bosons, we expect to find that the fraction of top decays with a
longitudinally produced W boson will depend on d, and thus will generically differ from the
result in the Standard Model (SM). We also expect the fraction to depend on the IR cutoff,
or threshold, µ, which is an is an important phenomenological parameter in the Unhiggs
construction. This is due to the fact that it serves to cut off the low energy part of the
Unhiggs continuum; the value of µ corresponds to the energy scale at which the Unhiggs
continuum begins. Without this IR cutoff there would be no mass gap and the continuum
of states corresponding to the Unhiggs would introduce modes with very low mass, which
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obviously contradicts experiment. The fact that the threshold must be large enough to avoid
this problem will manifest itself in the constraints that our calculation will place on µ. To
place constraints on the µ-d parameter space, we will compare the fraction of top decays with
longitudinally produced W bosons as calculated in the Unhiggs model with the experimental
data from CDF. Finally, we use the expected increased sensitivity of this measurement at
the LHC to obtain future expected bounds on the Unhiggs model.

2 Calculation of the top decay rate

Since we want to find the fraction of decays with a longitudinally produced W , we separately
calculate the decay rates for transversely and longitudinally emitted W bosons. Since the
transverse gauge bosons are unaffected by the electroweak symmetry breaking sector, the
top decay rate to transverse W ’s, Γ(t → W+

T b), will remain the same as in the Standard
Model. This decay rate is given by

Γ(t → W+
T b) =

g2

32π
mt

(

1− M2
W

m2
t

)2

. (2.1)

Since longitudinal gauge bosons are intimately connected to the electroweak symmetry
breaking sector, we expect that the unparticle Goldstone bosons of the Unhiggs model will
have an effect on the decay rate for longitudinally produced W bosons. We will indeed find
that this decay rate differs from its value in the SM. The physical decay rate is the sum of
the decay rate to a longitudinal W and the decay rate to a Goldstone boson in a generic Rξ

gauge.

ΓGI(t → W+
L b) = ΓRξ

(t → W+
L b) + ΓRξ

(t → π+b) (2.2)

where ΓGI(t → W+
L b) is the gauge invariant, physical decay rate, and ΓRξ

(t → W+
L b) and

ΓRξ
(t → π+b) are the gauge dependent decay rates to W+

L and π+, respectively. To begin,
we need the squared amplitudes for W+

L production as well as for π+ production. Since the
Unhiggs does not affect the fermion-gauge boson couplings, |MW+

L
|2 will be the same as in

the SM and is given by

|MW+

L
|2 = g2

2
(qµpν + pµqν − gµνq · p)ǫµ(k)ǫν(k) (2.3)

=
g2

2

mt

M2
W

|~q|
(

k0 + |~k|
)2

,

where p is the 4-momentum of the top quark, q is the 4-momentum of the bottom quark and
k is the 4-momentum of the W+

L boson. To find |Mπ+|2 we must make use of the fact that
the Unhiggs effective Lagrangian contains a Yukawa coupling term of the form

L ∋ −λtt̄R
H†

Λd−1

(

t
b

)

+ h.c. , (2.4)
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where H is the Unhiggs doublet, λt is the top Yukawa coupling, Λ is the UV cutoff of the
effective theory and d is the Unhiggs scaling dimension which is restricted to the range
1 ≤ d < 2 . We also note the following relations which are derived in [6]:

mt =
λtv

d

√
2Λd−1

, (2.5)

M2
W =

g2(2− d)µ2−2dv2d

4
,

where vd is the Unhiggs VEV and µ is the Unhiggs threshold mass. Using these relations
along with the vertex derived from Equation 2.4, we find that

|Mπ+|2 = g2

2

m3
t

M2
W

(2− d)µ2−2d|~q| , (2.6)

where q is the 4-momentum of the bottom quark.
The non-trivial part of the decay rate calculation is determining the various phase space

factors. To accomplish this, we will need to make use of the following results from [6]: The
W±

L propagator is given by

∆W±

L
(k) =

−i

k2 −M2
W





ξ (k2 −M2
W )µ2−2d − f(k2)

(

1− ξM2
W

(2−d)k2

)

f(k2)
(

k2 − ξM2
W

2−d

) kαkβ



 (2.7)

where

f(k2) ≡ µ4−2d − (µ2 − k2)2−d . (2.8)

In addition, the Goldstone boson propagator is given by

∆π±(k) =
i

f(k2) + ξ
M2

W

2−d
f(k2)/k2

. (2.9)

Calculating the phase space factors will be easiest in Landau gauge (ξ = 0) because the lon-
gitudinal W±

L propagator reduces to that of the corresponding SM Landau gauge propagator,
which is given by

∆W±

L
,ξ=0(k) =

i

k2 −M2
W

kµkν

k2
=

kµkν

M2
W

(

i

k2 −M2
W

− i

k2

)

. (2.10)

Since ∆W±

L
,ξ=0(k) has two simple poles at k2 = 0 and k2 = M2

W , the phase space takes the
following simple form in this gauge:

dΦW±

L
,ξ=0(k) = 2πθ(k0)δ(k2 −M2

W )− 2πθ(k0)δ(k2) . (2.11)
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The Goldstone boson propagator in Landau gauge is given by

∆π±,ξ=0(k) =
i

f(k2)
. (2.12)

The phase space in this case is not as simple as for W±
L . To find its form, we use the Unhiggs

propagator and the resulting Unhiggs phase space as derived in [6]. The Unhiggs propagator
is

∆h(k
2) =

i

f(k2)−m4−2d
(2.13)

while the Unhiggs phase space is

dΦh(k
2) =

−2 sin(πd)θ(k0)θ(k2 − µ2)(k2 − µ2)2−d

(µ4−2d −m4−2d)2 + (k2 − µ2)4−2d − 2(µ4−2d −m4−2d)(k2 − µ2)2−d cos(dπ)

+ 2πθ(k0)
(µ4−2d −m4−2d)

d−1

2−d

(2− d)
δ
[

k2 − µ2 −
(

µ4−2d −m4−2d
)

1

2−d

]

. (2.14)

Since the Goldstone boson propagator in Landau gauge, Eq. (2.12), is equal to the Unhiggs
propagator with m = 0, we use the Unhiggs phase space with m = 0 to find the following
form for the Goldstone boson phase space:

dΦπ±,ξ=0(k) =
−2 sin(πd)θ(k0)θ(k2 − µ2)(k2 − µ2)2−d

µ8−4d + (k2 − µ2)4−2d − 2µ4−2d(k2 − µ2)2−d cos dπ
(2.15)

+ 2πθ(k0)
µ2d−2

2− d
δ(k2) .

Note that this phase space is a sum of a pole at k2 = 0 and a continuum above the unparticle
threshold µ. It will be useful to separate these two factors and write the Goldstone boson
phase space as

dΦπ±,ξ=0(k) ≡ dΦ
(1)
π±,ξ=0(k) + dΦ

(2)
π±,ξ=0(k) (2.16)

where

dΦ
(1)
π±,ξ=0(k) =

−2 sin(πd)θ(k0)θ(k2 − µ2)(k2 − µ2)2−d

µ8−4d + (k2 − µ2)4−2d − 2µ4−2d(k2 − µ2)2−d cos dπ
(2.17)

and

dΦ
(2)
π±,ξ=0(k) = 2πθ(k0)

µ2d−2

2− d
δ(k2) . (2.18)

Armed with the phase space factors, we will now calculate the Landau gauge decay rates
to W+

L and π+, respectively. Since the W+
L phase space is just the sum of two delta function

factors, the decay rate for W+
L emission in Landau gauge is easily found to be

ΓW+

L
,ξ=0 =

1

16πm3
t

(m2
t −M2

W )|MW+

L
(k2 = M2

W )|2 − 1

16πmt

|MW+

L
(k2 = 0)|2 . (2.19)
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Using Eq. (2.3), we find

ΓW+

L
,ξ=0 =

g2

64π

m3
t

M2
W

(

1− M2
W

m2
t

)2

− g2

64π

m3
t

M2
W

. (2.20)

To find the decay rate for π+ emission in Landau gauge, we separate dΓπ+,ξ=0 into two parts,
corresponding to the separation of the phase space factors in Eq. (2.16).

dΓπ+,ξ=0 ≡ dΓ
(1)
π+,ξ=0 + dΓ

(2)
π+,ξ=0 (2.21)

where

dΓ
(1)
π+,ξ=0 =

1

2mt

dΦ
(1)
π+,ξ=0(k)dΦb(q)|Mπ+|2(2π)4δ4(p− k − q) , (2.22)

and

dΓ
(2)
π+,ξ=0 =

1

2mt

dΦ
(2)
π+,ξ=0(k)dΦb(q)|Mπ+|2(2π)4δ4(p− k − q) . (2.23)

Here k is the 4-momentum vector of the π+ and Mπ+ is given by Eq. (2.6). Focusing first

on dΓ
(1)
π+,ξ=0, we find

Γ
(1)

π+,ξ=0 =
1

2mt

g2

2(2π)3
m2

t

M2
W

(2− d)µ2−2d

∫

d4kdΦ
(1)

π+,ξ=0(k)
mt

2
δ(mt − k0 − |~k|) (2.24)

=
g2m2

t

64π3M2
W

(2− d)µ2−2d

∫

d4kdΦ
(1)

π+,ξ=0(k)δ(mt − k0 − |~k|) .

To simplify the calculation of dΓ
(1)
π+,ξ=0, let

g(k2 − µ2) ≡ −2 sin(πd)(k2 − µ2)2−d

µ8−4d + (k2 − µ2)4−2d − 2µ4−2d(k2 − µ)2 cos(dπ)
. (2.25)

Then we have

Γ
(1)

π+,ξ=0 =
1

2mt

g2

2(2π)3
m2

t

M2
W

(2− d)µ2−2d (2.26)

×
∫

d4kθ(k0)θ(k2 − µ2)g(k2 − µ2)δ(mt − k0 − |~k|) .

Next, we write d4k = dk0d3k = dk0|~k|2d|~k|dΩ, complete the angular integration and then

perform the delta function integration over |~k| to get

Γ
(1)
π+,ξ=0 =

1

2mt

g2

(2π)2
m2

t

M2
W

(2− d)µ2−2d (2.27)

×
∫ mt

0

dk0(mt − k0)2θ(2mtk
0 −m2

t − µ2)g(2mtk
0 −m2

t − µ2) .
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The theta function here simply enforces the fact that the phase space for the unparticle is
zero below threshold and therefore that the decay rate is zero unless mt ≥ µ. With the
substitution x = 2mtk

0 −m2
t − µ2, we finally obtain the following result:

Γ
(1)
π+,ξ=0 =

g2

128π2

m3
t

M2
W

(2− d)µ2−2d

∫ m2
t−µ2

0

(

m2
t − µ2 − x

m2
t

)2

g(x)dx (2.28)

with g(x) given by Eq. (2.25). The evaluation of Γ
(2)
π+,ξ=0 is much easier since the phase space

dΦ
(2)
π+,ξ=0 is just µ2d−2

2−d
times the phase space for a single particle of mass zero. Therefore we

simply have a decay of the top quark into two massless particles. The decay rate for this
process is given by

Γ
(2)

π+,ξ=0 =
1

8π

1

2mt

µ2d−2

2− d
|M+

π |2 . (2.29)

Using |~q| = mt

2
in the massless case, we find

Γ
(2)
π+,ξ=0 =

g2

64π

m3
t

M2
W

. (2.30)

Combining Eqs. (2.20), (2.28) and (2.30) we arrive at the gauge invariant decay rate of the
top quark with a longitudinal W in the final state:

ΓGI(t → W+
L b) =

g2

128π2

m3
t

M2
W

(2− d)µ2−2d

∫ m2
t−µ2

0

(

m2
t − µ2 − x

m2
t

)2

g(x)dx (2.31)

+
g2

64π

m3
t

M2
W

(

1− M2
W

m2
t

)2

.

The first term in Eq. (2.31) contains all of the d and µ dependence, while the second term
is completely independent of d and µ. As a check on the correctness of Eq. (2.31), note
that for d = 1, the Unhiggs model is equivalent to the SM and therefore the decay rates in
the Unhiggs model and in the SM should be equal. This condition holds true by virtue of
the fact that g(x) = 0 at d = 1, and thus the first term in Eq. (2.31) is also zero at d = 1.
The only non-zero part of the decay rate is the second term, which is exactly the SM result.
As a further check of this result, the calculation was done in a general gauge, with ξ left
arbitrary. The calculation is considerably more involved, but the final gauge invariant decay
rate remains, as it must, equal to the decay rate found in Eq. (2.31).

3 Comparison with Data

To compare with current CDF data and future LHC data, we must calculate the value of F0,
which is defined as the fraction of the top decays with a longitudinally produced W boson:

F0 ≡
Γ(t → W+

L b)

Γ(t → W+
L b) + Γ(t → W+

T b)
. (3.1)
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with Γ(t → W+
L b) given in Eq. (2.31) and Γ(t → W+

T b) given in Eq. (2.1). The current top
quark data from CDF yields the following value for F0 [10]:

F0 = .66± .16 . (3.2)

The LHC promises to make a more accurate determination of this quantity. With an inte-
grated luminosity of 10 fb−1, the accuracy of the F0 measurement at the LHC should be at
a level of about ±.015 [11]. The Standard Model tree level calculation for this quantity is
F0 = .699, which is clearly within the allowed region in Eq. (3.2). The value of F0 in the
Unhiggs model will depend on the values of µ and d. Because the first term in Eq. (2.31)
is always greater than or equal to zero, and the second term is a constant equal to the SM
result, the value of F0 in the Unhiggs model will always be greater than or equal to the SM
value for any values of µ and d. From Eq. (3.2), we see that the Unhiggs model is thus ruled
out at the 68% level for F0 > .82. Figure 1 shows a contour plot of the µ-d parameter space
that is constrained by CDF, and also the expected constraints on the parameter space due
to the LHC. In this plot, we assume the central value of F0 at the LHC to be the Standard
Model value of 0.699, not the current CDF value of 0.66. From Figure 1, we see that the LHC
greatly improves the constraints on the Unhiggs model for values of the Unhiggs threshold µ
near 100 GeV. For example, given a value of µ = 100 GeV, current data says nothing about
the value of d, but the LHC should constrain d . 1.3 at 68%. However, for µ & 110 GeV,
top decay analysis yields very little information about the value of the scaling dimension,
even with expected LHC data. Of course, experimental cuts that restrict the longitudinal
component to be close to the W mass will further reduce the experimental sensitivity.

4 Conclusions

In this paper, we calculated the decay rate of the top quark in the Unhiggs model and
found that, due to the unparticle nature of the Goldstone bosons, it is different than the top
decay rate in the SM when the decay includes an emission of a longitudinal W boson. We
then compared this result to measurements from CDF, which constrain the fraction of top
decays which contain a longitudinal W . This allowed us to rule out some regions of Unhiggs
parameter space. The region of parameter space most affected by the CDF constraint is
the region of high scaling dimension and low threshold mass (compared to the weak scale).
Including the higher expected accuracy of top decay measurements at the LHC, we found
that the LHC will be able extend the constrained region to intermediate values of d and µ. In
future work, we hope to extend the study of Unhiggs phenomenology by directly calculating
the Unhiggs production cross section and its various decay rates at the LHC.
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Figure 1: Contour plot of F0 as a function of µ and d. The small dark region is the parameter
space ruled out by current CDF data at a 90% CL while the next darkest region is ruled out
by CDF data at a 68% CL. The next darkest (light blue) region is the additional parameter
space affected by expected LHC data, also at a 68% CL.
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