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We describe an implementation of a deconstructed gauge theory with charged fermions defined

on an interval in five dimensional AdS space. The four dimensional slices are Minkowski, and the

end slices support four dimensional chiral zero modes. In such a theory, the energy scales warp

down as we move along the fifth dimension. If we augment this theory with localized neutral 4-

dimensional Majorana fermions on the low energy end, and implement a Higgs mechanism there,

we can arrange the theory such that the lightest gauge boson mode and the chiral mode on the

wall at the high energy end are parametrically lighter than all the other states in the theory. If this

semiclassical construction does not run into problems at the quantum level, this may provide an

explicit construction of a chiral gauge theory. Instanton effects are expected to make the gauge

boson heavy only if the resulting effective theory is anomalous.
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1. Introduction

Chiral gauge theory of weak interactions forms an important ingredient of the standard model,

but so far chiral gauge theories have defied a definition beyond perturbation theory. These in fact

form the only class of perturbatively defined field theories with no non-perturbative formulation.

This problem is gaining practical import since a number of proposed extensions to the standard

model invoke strongly interacting chiral dynamics, and a quantitative analysis requires the evalua-

tion of non-perturbative condensates in these theories. The only known non-perturbative regulator

in four-dimensions is the lattice formulation and we investigate it here.

A fundamental problem in realizing a chiral gauge theory on the lattice is encapsulated in the

Nielsen Ninomiya theorem [1]. According to this theorem, under mild conditions of locality and

analyticity of the propagator, a translationally invariant fermion theory that preserves the continuum

chiral symmetry exactly on the lattice has paired left and right chiral modes in the continuum

limit. Since these modes are related by boosts in the discretized theory, they cannot be differently

charged under any symmetry preserved by the discretization, and any naïve attempt at obtaining

an unbroken chiral gauge theory must fail. This result is also expected based on our knowledge

that chiral gauge theories are undefined if anomalies do not cancel. The anomaly cancellations

can occur, as in the standard model, between fermion species that interact only through the gauge

fields. This cancellation is difficult to preserve in any naïve discretization.

A way out of this conundrum was suggested by Kaplan [2] by extending fermionic gauge

theories to five dimensions. Theories on a five dimensional interval typically have edge states that

are chiral under the four dimensional Euclidean group acting on the edge of the region. These states

still come in chiral pairs, but one can arrange the parameters to locate the left and right chiral modes

on the different edges, and hence separate them in the fifth dimension. Since the fifth dimension is

unphysical, one is free to add interactions that are not translationally invariant along this direction.

Previous attempts to realize a chiral gauge theory by confining the gauge interactions to only a part

of the five dimensional space were, however, unsuccessful. [3].

In this paper we consider an alternate formulation with a truly five dimensional gauge field [4].

The translational invariance of this gauge interaction is broken by invoking a Higgs’ mechanism

using extra matter fields propagating only along one edge. This Higgs’ phenomenon makes the

fermion states at that edge heavy, but has negligible effect on states located elsewhere in the five

dimensional world. A classical analysis reveals that in the presence of background five-dimensional

space-time curvature we can take a limit in which a four-dimensional gauge boson and one chiral

fermion remain massless, whereas all the other states in the theory become infinitely heavy and

decouple. If the resulting gauge theory has an uncancelled triangle anomaly then this construction

of a chiral gauge theory is easily seen to fail at the quantum level. A complete quantum analysis

remains beyond our reach because even perturbation theory is not valid in some regions in this five

dimensional space.

2. The flat space analogue

Before constructing the full model, it is instructive to study an analogue construction in flat

five-dimensional space. We consider this world bounded by flat Euclidean slices separated by
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!0 "0

Figure 1: The exponentially localized edge states of the fermions, !0 # exp−Mz and "̄0 # expMz.

distance R′ −R. A free massive fermion in this spacetime is described by the action

S =
∫

d4 x

∫ R′

R
d z

{

− i !̄$µ %̄
µ!− i"$µ%

µ "̄+!$z"− "̄$z!̄

+M!"+M "̄!̄
}

,

where ! and " are two-component fermion fields of opposite chirality, % µ are the Pauli matrices

(or identity for the time direction), M is the five dimensional mass, and the overbar represents

conjugation. A Kaluza-Klein decomposition gives modes "n and !n that satisfy

($z−M)"̄n = mn"̄n − ($z+M)!n = mn!n .

The edge states are the states with m0 = 0 and are exponentially localized at the left and right walls

(Fig. 1). The mass scaleof the rest of the states in the theory, &/2(R′ −R), is set by the length of

the fifth dimension.

A gauge theory is obtained by changing the derivatives above to gauge covariant ones and

adding a kinetic term for the gauge bosons

∫

d4 x

∫ R′

R
d z

1

4g2
5

(

Fµ'F
µ' + 2Fµ5F

µ5
)

.

In such a theory the left and right chiral modes, !0 and "0, have equal charge, and one needs to

decouple one of them (by making it heavy), say "0 on the right wall, to obtain a chiral gauge theory.

To this end, we introduce an Higgs’ mechanism localized on the right wall, and use the Higgs’ field

H to mix " with a neutral fermions SL with large Majorana mass, m:1

y"HSL+mSLSL+ h.c.

where y is the Yukawa coupling. This provides a mass of order y〈H〉 to "0. Since Yukawa couplings

are infrared free it is difficult to make y much larger than the gauge coupling g. This is problematic

since for small values of 〈H〉 the gauge boson also acquires a mass of order g〈H〉, and it appears

one cannot take a limit where the unwanted mode "0 decouples, but the gauge boson stays in the

spectrum.

1The addition of a neutral right handed fermion SR at R′ along with its Yukawa coupling to the bulk field !̄ has,

however, very little impact on the zero mode !0 exponentially localized at R. Such an addition is necessary in the actual

construction but is dropped in this exposition for brevity.
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The situation is qualitatively different when the vacuum expectation value is large. The odd

Kaluza-Klein modes of the gauge boson, which vanish at the boundary, do not feel the effect of

the Higgs’ mechanism at the classical level and retain a mass, m̃1, of the order of &/2(R′ −R).

The even Kaluza-Klein modes pick up large masses by this Higgs’ mechanism. So, if the length of

the fifth dimension is large, we do find light gauge bosons and a massless chiral mode, !0 in the

spectrum2 as required to construct a chiral gauge theory.

This construction, however, fails since all and not only the lightest of the odd Kaluza-Klein

modes of the gauge field are controlled by the same scale &/2(R′ −R). Thus in the limit that the

extra dimension becomes large, the theory reverts to being five dimensional.

3. The Model in AdS5

It has been known for a while [5] that if we consider an interval in a curved five dimensional

space, the gravitational acceleration towards one wall can give rise to an effective four dimensional

theory even when the length of the extra dimension is large. Accordingly, we consider a Euclidean

version of a slice of AdS5 bounded by four-dimensional flat Minkowski slices separated by a proper

distance denoted by lnR′/R. AdS5 is a homogeneous five-dimensional space with a constant nega-

tive radius of curvature, which is also denoted by −R. The comparison with our flat space analysis

is easiest in the metric

ds2 =

(

R

z

)2
(

(µ'dx
µdx' −dz2

)

,

with the chosen interval being (R,R′). In this background, the odd Kaluza-Klein modes of the

gauge boson have masses given by

m̃2
1 = O

(

1

R′2 ln(R′/R)

)

, m̃2
n ≈ O

(

1

R′2

)

,

whereas the fermion modes are not significantly affected for large M. This lets us take the limit

R′ → 0 R′2 ln(R′/R) → )

which decouples all the Kaluza-Klein modes leaving behind a massless gauge boson interacting

with the chiral fermion !0.

4. Deconstruction

Five dimensional theories may not be renormalizable, and it may not be possible to interpret

the Lagrangian parameters as running couplings at a certain scale. We, therefore, need to be careful

in drawing conclusions based on the tree level constructions provided in the previous sections. To

study this systematically we choose to deconstruct [6] the five dimensional theory into a stack

of four dimensional continuum slices placed at discrete positions along the fifth dimension. To

2The masses of the Kaluza-Klein modes "n, controlled by the scale M and not by the size of the extra dimension,

stay heavy.
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maintain as many of the space time symmetries of the AdS5 space as possible, we choose the

positions of the slices to be

zi = (1+a)i−1
R, i= 1 . . .N, a= exp

(

1

N−1
ln
R

R′

)

−1

where we refer to the small dimensionless number a as the “lattice spacing”. The modes at each of

these four dimensional slices can be reinterpreted as those of fields transforming under a separate

four dimensional gauge group. It is easy to check that the gauge coupling of the ith gauge group is

given by
1

g2
i

=
aR

g5(zi)2
,

where we have generalized the model to allow for a variation of g5 along the fifth dimension.

The link fields in the fifth dimension, P exp
∫ zi+1

zi
iA5 dz can then be interpreted as bifundamen-

tal scalars (transforming according to the fundamental (anti-fundamental) representation under the

gauge theory at zi (zi+1)). With this identification, the original theory, before we add the Higgs

mechanism at R′, can be seen to be invariant under the product of the gauge groups at each site but

realized in the Higgs phase with the bifundamentals acquiring a vacuum expectation value related

to the lattice spacing. This view of the five-dimensional theory is called deconstruction. The low-

est gauge boson mode is, not surprisingly, the discretization of the lowest Kaluza-Klein mode: the

equal superposition of the gauge fields on all the slices, and its effective coupling is given by

1

g2
4

≈
N

*
i=1

1

g2
i

.

The continuum AdS5 symmetry requires all lengths to scale in proportion to the z coordinate

as we move in the fifth dimension. To maintain a discrete version of this we can choose the

renormalized couplings to satisfy

gRi (µi) = constant if µi # 1/zi .

A one loop calculation, assuming µ ( 1/R′, then yields

1

g2
4(µ)

≈
N

g2
1(1/aR)

+
+0

8&2
lnaRµ

whence we can obtain the , parameter of the theory associated with the lowest mode to be

aR,= exp
−8&2N

+0g
2
1(1/aR)

.

To obtain a chiral gauge theory we need to take the limit

mKK

,
→ ) ,

m1

,
→ 0 ,

where mKK is the typical Kaluza-Klein state and m1 is the lightest gauge mode. Using

m2
KKR

2 ∼ (1+a)2N ,
m2

1

m2
KK

∼
1

N log(1+a)
,
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one finds that the limit can be realized with the choice

N → ) g2
1(

1

aR
) ∼

8&2

+0a
,

with a held fixed.

The arguments used in deriving these results, however, relied on the wavefunctions on the

lattice being a discretization of the continuum tree-level wave functions. This property holds only

if the lattice spacing a is much smaller than unity, and this in turn implies we need to choose the

lattice couplings to be large. As a result, the one-loop results presented here can only be treated as

suggestive.3

5. Potential problem

It is well known that the massless limit of a vector field theory is singular, and often involves

strong couplings. It is instructive to note that even in our construction, the ‘longitudinal’ mode

of the gauge field becomes strongly interacting with an effective Yukawa like interaction with the

fermions. This interaction, of strength

y(z) #
z ln(z/R)

R′ ln(R′/R)
,

pushes the unwanted chirality fermion away from the wall with the Higgs’ mechanism, and can

potentially make it light. Explicit evaluation in one-loop perturbation theory, however, shows that

the fermion decouples even in the presence of this interaction. Unfortunately, the large gauge

coupling precludes a pertubative resolution of this question. To settle this issue a non-perturbative

calculation is required.

References

[1] H.B. Nielsen and M. Ninomiya, Absence of neutrinos on a lattice (I). Proof by homotopy theory,

Nucl. Phys. B 185 (1981) 20 [doi:10.1016/0550-3213(81)90361-8]; erratum, ibid. B 195 (1982) 541

[doi:10.1016/0550-3213(82)90011-6].

[2] D.B. Kaplan, A Method for simulating chiral fermions on the lattice, Phys. Lett. B 288 (1992) 342

[arXiv:hep-lat/9206013].

[3] M.F.L. Golterman, et al., Investigation of the domain wall fermion approach to chiral gauge theories

on the lattice, Phys. Rev. D 49 (1994) 1606 [arXiv:hep-lat/9309015].

[4] T. Bhattacharya, et al., Warped Domain Wall Fermions, JHEP 08 (2005) 061 [arXiv:hep-lat/0503011].

[5] L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83

(1999) 3370 [arXiv:hep-ph/9905221]; C. Csáki, et al., Gauge theories on an interval: Unitarity

without a Higgs, Phys. Rev. D 69 (2004) 055006 [arXiv:hep-ph/0305237].

[6] N. Arkani-Hamed, A.G. Cohen, and H. Georgi, (De)constructing dimensions, Phys. Rev. Lett. 86

(2001) 4757 [arXiv:hep-th/0104005]; C.T. Hill, S. Pokorski, and J. Wang, Gauge invariant effective

Lagrangian for Kaluza-Klein modes, Phys. Rev. D 64 (2001) 105005 [arXiv:hep-th/0104035].

3A more detailed argument shows that it is indeed the coupling at the scale 1/aR which controls the validity of the

required one-loop calculation.

P
o
S
(
L
A
T
2
0
0
5
)
1
3
6

136 / 6

http://dx.doi.org/10.1016/0550-3213(81)90361-8
http://dx.doi.org/10.1016/0550-3213(82)90011-6
http://arXiv.org/abs/hep-lat/9206013
http://arXiv.org/abs/hep-lat/9309015
http://arXiv.org/abs/hep-lat/0503011
http://arXiv.org/abs/hep-ph/9905221
http://arXiv.org/abs/hep-ph/0305237
http://arXiv.org/abs/hep-th/0104005
http://arXiv.org/abs/hep-th/0104035

