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Abstract

We consider extra dimensional field theory descriptions of backgrounds with N different
throats where one of the extra dimensions in each throat is much larger than the
others. Such backgrounds can be described by field theory on N 5D warped spaces
which intersect on a ultraviolet (UV) brane. Given a field that propagates in all
N throats there are N boundary conditions on the UV brane (which are determined
by the effective Lagrangian on the UV brane) in addition to the boundary conditions
on the N infrared branes. We derive a general set of UV boundary conditions and
give examples of how they are applied to particular situations. Three simple example
applications are given: in the first the number of families is determined by the number
of throats and the SUSY flavor problem is solved via an S3 symmetry of the throats; in
the second we embed this scenario in a SUSY GUT with a solution of the doublet-triplet
splitting problem based on the product group approach; while in the final example we
show a simple geometric implementation of a SUSY trinification model on three throats.

http://arxiv.org/abs/hep-ph/0604218v1
http://arxiv.org/abs/hep-ph/0604218


1 Introduction

Theories with extra dimensions have found many new applications over the past ten years.
Large and warped extra dimensions have been proposed to alleviate the hierarchy prob-
lem [1, 2], small extra dimensions can give rise to novel approaches to GUT model build-
ing [3], universal extra dimensions can give new dark matter candidates [4], and even new
mechanisms for electroweak symmetry breaking can be found using extra dimensions [5–7].
In most of these models, only the simplest possible topologies of the extra dimensional space
have been assumed: a single (or sometimes two) extra dimensions compactified on a circle
(or torus), or a very simple orbifold like S1/Z2 or T 2/Z2. This severely limits the possible
configurations available for model building. For example in the case of warped extra dimen-
sions it is usually assumed that there is a single warp factor in the theory, and that one
needs to introduce complicated intersecting brane configurations in order to get a warped
model in more than one extra dimension. However, it has been found in string theory [8]
that a generic type of situation arising from flux compactifications leads to geometries with
multiple “throats” hanging out from the “head”, which is a compact Calabi–Yau manifold
(see fig. 1). Such compactifications with multiple throats could have many advantages over
the more commonly considered ones. It is relatively simple to introduce multiple scales into
the theory, it allows for clearly separate fields without having to introduce multiple extra
dimensions, etc. The purpose of this paper is to give a simple field theory description of such
multi-throat string compactification set-ups, and to show some possible simple applications
for extra dimensional model building that would not be easily achieved without such set-ups
(see also [9] for previous phenomenological applications of multi-throat set-ups).

2 Boundary Conditions

In the field theory limit that we are considering we imagine that the transverse sizes of
the throats are all negligible, and also shrink the “head” to a single point, the UV brane.
Thus we end up with N 5D bulks parametrized by the coordinates z1, . . . , zN (see fig. 2). We
should again stress that these are not coordinates of N extra dimensions, but rather N single
extra dimensions intersecting at a point in space, thus identifying the points1 z1 = 0 with
z2 = 0, . . . , zN = 0. This point is what we will be calling the UV brane. The other N
(distinct) endpoints of the throats corresponding to z1 = R′

1, z2 = R′
2, . . . , zN = R′

N will
correspond to N separate IR branes, thus yielding N separate scales in the theory. This
set-up is a generalization to multi-throats of our construction [10] where two throats have
been introduced to separate the top and bottom quarks from the light fermions.

On this geometry, let us consider a single scalar field φ which propagates in all of the
throats. We start our analysis of the modes of this field by introducing N 5D bulk scalar

1For a flat extra dimension, we can always chose the UV brane in each throat to be located at zi = 0. In
a warped extra dimension where translational invariance along the extra dimension is lost, we cannot simply
shift the origin of the coordinates zi to bring the UV brane at zi = 0. The discussion presented here is easily
generalized to more general (warped) set-ups.
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Figure 1: A generic multi-throat geometry. Multiple throats are hanging out from the
head which is a compact Calabi-Yau manifold. In our field theory approach, each throat
is modelled by a single warped extra dimension. The throats intersect at a point, the UV
brane. The UV physics of the head is described by some brane localized operators connecting
the various fields living in the individual throats.

fields φi each of which will live in just one of the throats that intersect on the single UV
brane. The bulk actions are given by2

Lbulk =
∑

i

√
g(i)

(

1

2
gMN
(i) ∂Mφi∂Nφi − Vi(φi)

)

, (2.1)

where gi is the metric in the i-th throat. In order for the picture to be consistent, they
have to match on the UV brane: g(1)|z1=UV = · · · = g(N)|zN=UV = g(UV ). At this point,
the N fields φi are still totally independent. In order to make it a single field propagating
over the whole geometry we need to connect these fields at the UV brane. For simplicity
we will first consider only the lowest dimension operators on the UV brane (warp factor
dependencies are included in the mass terms):

LUV =

(

−1

2

N
∑

i,j=1

mijφiφj

)

|zi=UV

. (2.2)

The variation of the bulk actions and the UV brane action gives the following N boundary
conditions (BCs):

0 = ∂zi

(

g55
(i)
√

g(i)φi

)

+
N

∑

j=1

mijφj . (2.3)

2Throughout this paper,we’ll use a mostly minus signature and M, N . . . = 0, 1, 2, 3, 5 denote bulk coor-
dinates while µ, ν . . . = 0, 1, 2, 3 denote brane coordinates.
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Figure 2: Illustration of the limit of the generic multi-throat geometry considered in this
paper.

UV brane kinetic terms can be included in a straightforward fashion, leading to ∂µ∂µφi

terms in the BC. Including interaction terms on the UV brane will lead to nonlinear terms
in the BCs. Note, that (2.3) provides exactly the right number of BC’s to be able to fully
determine the system. We started out with N scalar fields each of which satisfy a second
order differential equation, so one needs 2N BC’s to solve the system. N of these are provided
by the BC’s at the IR branes, while further N come from (2.3) at the UV brane.

A particular choice of mass terms on the UV brane leads to a very simple set of BCs. If
the mass terms have the form (with the convention that φN+1 = φ1)

LUV = −
N

∑

i=1

ki m (φi − φi+1)
2
|zi=UV (2.4)

then the BCs are
∂zi

(

g55
(i)
√

g(i)φi

)

+ 2kim(φi − φi+1) = 0. (2.5)

In the large m limit these equations will just simplify to the N − 1 independent equations
(independent of the ki’s):

φi = φi+1 for i = 1 . . . N − 1 (2.6)

while the sum of these equations will give the remaining BC

0 =
N

∑

i=1

1
ki
∂zi

(

g55
(i)
√

g(i)φi

)

(2.7)

A mechanical analogy for this system is given by N vibrating rods, which are connected at
their ends with springs to each other, with the boundary mass m corresponding to the spring
constant (see Fig. 3).

In a more general case, the structure of the spectrum, in particular the number of zero
modes and their localization in the throats, depends on the BC on the UV brane, effectively

3



Figure 3: A mechanical analogy: our procedure of generating the BC’s on the UV brane can
be thought of as vibrating rods connected by springs at one of their ends.

described by the localized mass terms. The general set of BCs in eq. (2.3) can be rewritten
as:

0 = ∂zi
φi +

N
∑

j=1

m̃ijφj , (2.8)

where

m̃ij =
(

g55
(UV )

√
g(UV )

)−1 (

∂zi

(

g55
(i)
√

g(i)

)

δij + mij

)

|zi=UV
(2.9)

(we have used here the continuity of the metric on the UV brane, and simply redefined the
mass term in order to include the derivative of the metric factor). Let’s assume for simplicity
that bulk mass terms are absent and the BC’s on the IR branes are Neuman: in this case the
zero modes are characterized by flat wave functions φi = const. Therefore, there is a zero
mode for every BC involving only derivatives: after diagonalizing the mass matrix m̃, we can
see that the number of zero modes is equal to the number of zero eigenvalues (N−rank m̃).

The eigenstates also determine where the zero modes live. Take v(a)
i to be the components

of a−th eigenvector with eigenvalue 0 (i.e. a runs from 1 to N−rank m̃). Then the solutions
for the constant zero modes are

φ(a)
i ∝ v(a)

i . (2.10)

If vk is smaller that the other coefficients, the component of the zero mode living in the k-th
throat is suppressed with respect to the others, so that the zero mode is repelled from the
k-th throat. On the other hand, if vk is larger than the other v’s, than the zero mode lives
preferably in the k-th throat. In this way, just playing with the BCs we can control where
a scalar zero mode is living. For the more general case with non-constant zero modes bulk
solutions (but still assuming that the warp factors and bulk masses are the same in each
throat), the actual zero modes correspond to eigenvectors of m̃ij whose eigenvalues are the
negative of the slope of the zero mode bulk solution. It is straightforward to generalize this
to the case where the bulk zero mode solutions are different in each throat.
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It is easy to check that for a flat bulk with the general UV BCs (2.3) that the standard
reflection/transmission problem works correctly. We can for instance check it explicitly in the
non-trivial case of three throats connected at a UV brane by general BCs of the form (2.3).
Taking IR BCs such that on one bulk there is an incoming (towards the UV brane) plane
wave and a reflected plane wave, while in the other bulks there are transmitted (moving
away from the UV brane) plane waves, the wave functions of the three scalar fields will be of
the form (the UV BCs require the waves to have the same frequency in the different throats
and, assuming the same bulk mass in the different throats, the bulk equations of motion also
impose the wave vectors to have the same strength)

φ1(x, z1) = ei(ωt−kz1) + r ei(ωt+kz1) (2.11)

φ2(x, z2) = α2ei(ωt+kz2) (2.12)

φ3(x, z3) = α3ei(ωt+kz3) (2.13)

r is the reflection coefficient in the first throat, while α2,3 are the transmission coefficients in
the other throats. The general BCs at the UV brane (zi = 0) are

∂z1
φ1 |z1=0 + m11φ1 |z1=0 + m12φ2 |z2=0 + m13φ3 |z3=0 = 0

∂z2
φ2 |z2=0 + m12φ1 |z1=0 + m22φ2 |z2=0 + m23φ3 |z3=0 = 0

∂z3
φ3 |z3=0 + m13φ1 |z1=0 + m23φ2 |z2=0 + m33φ3 |z3=0 = 0 (2.14)

These three equations can be solved to obtain the reflection and transmissions coefficients
in terms of the UV brane masses, mij . For example, in the simplest case with the boundary
terms as in (2.4) and of three throats in the limit m → ∞ the BC’s will be

φ1 |z1=0 = φ2 |z2=0 = φ3 |z3=0,

∂1φ1 |z1=0 + ∂2φ2 |z2=0 + ∂3φ3 |z3=0 = 0. (2.15)

One can then explicitly calculate that

r = −1

3
, α2 =

2

3
, α3 =

2

3
, (2.16)

and thus

|r|2 + |α2|2 + |α3|2 = 1. (2.17)

This is a simple example of conservation of probability, that is the sum of the reflection
coefficient and the transmission coefficients into the different throats adds up to one:

R +
N

∑

i=1

Ti = 1 (2.18)

One can show that this relation is also satisfied for the general case with the BC’s from (2.14).
This simple result can be easily generalized to incoming waves on an arbitrary number of
throats.
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2.1 Spectrum of KK modes

The spectrum of KK modes in the ‘thin’ limit of a multi-throat configuration possesses some
interesting features. A free scalar field propagating on N flat throats joined at a single UV
brane provides a simple case that shows many aspects of the general situation. Applying
Neumann BCs at the IR ends of each of the throats φ′(R′

i) = 0 and the simple Kirchhoff-type
BCs given in Eqs. (2.6)–(2.7) at the UV brane, the solution in the i’th throat for the n’th
KK wavefunction is given by

φi,n(zi) =
√

2Cn
cos[qn(R′

i − zi)]

cos(qnR′
i)

(2.19)

where the KK mass-squareds are determined by the solutions for qn of the eigenvalue equation

N
∑

i=1

tan(qnR
′
i) = 0. (2.20)

The normalization constant Cn is found to be

Cn =
1

√
∑

i R
′
i sec

2(qnR′
i)

. (2.21)

If the N throats are symmetric R′
1 = R′

2 = . . . R′
N ≡ R′ then the solutions to the KK

momentum eigenvalues are simple

qn =
nπ

R′ (2.22)

with normalized wavefunction in the i’th throat

φi,n(zi) =

√

2

NR′ cos[qn(R′ − zi)]. (2.23)

Notice that this normalization factor depends upon the total volume of the N throats but
the mass gap to the first excited excited state above the zero mode is 1/R′. This leads to the
possibility of large volume compactifications without the usual associated light KK modes
cf. [14].

However if the throats are not symmetric, as we would generically expect, then the
spectrum of KK modes can be extremely complicated, even in this very simple flat-throat
free-scalar case. In particular, if the throat lengths R′

i are not all rationally related then
the spectrum of KK masses appears to be ‘chaotic’ as can be seen by simple numerical
investigation of the eigenvalue equation (2.20). Alternatively Dirichlet conditions at the UV
brane can lead to the spectrum of N decoupled throats.

6



3 Fermions in multiple throats

Fermions in extra dimensions always require special attention, since chiral fermions appear
only after imposing appropriate BC’s (see [11] for an extensive discussion of fermion BC’s).
The reason is that higher dimensional fermions are necessarily non-chiral Dirac fermions. In
a single flat extra dimension a 5D fermion is given (in terms of 4D Weyl spinors) as

(

χ(z)

ψ̄(z)

)

, (3.1)

where χ will denote a left-handed 4D Weyl fermion, and ψ a right handed one. The equation
of motion in the bulk for such a field with bulk mass m is given by

− iσ̄µ∂µχ− ∂zi
ψ̄ + mψ̄ = 0,

−iσµ∂µψ̄ + ∂zi
χ+ mχ = 0. (3.2)

χ,ψ satisfy first order differential equations, so one must impose in total two BC’s for the
system. The simplest BC’s are ψ|0,R′ = 0 (or χ|0,R′ = 0) which would imply the presence of
a chiral zero mode in χ with wave function e−mz (or for ψ with wave function emz). Another
possible choice is that of twisted BC’s, that is ψ|0 = χ|R′ = 0 (or the other way round) in
which case there would be no zero modes.

Here we would like to construct a set-up with throats, which could give a theory with
chiral zero modes, that could be localized in either of the throats, or in both. For simplicity
we will start with just two throats. If these were not connected at the UV brane, there would
be many possibilities for the zero modes. For example, we could have a LH (or a RH) zero
mode in each throat, or one LH in one and one RH in the other throat (assuming none of the
fields are twisted). However, we would like a case, when there is a single (for example LH)
zero mode propagating in both throats. This means that we need to start with a separate
LH zero mode in both throats, and remove one combination of them. Due to chirality this
can only be done by adding a localized RH mode at the UV brane. Consider for example

the following action (
←→
∂zi

=
−→
∂zi

−
←−
∂zi

):

S =

∫ R′

1

0

d4xdz1

(

−iχ̄1σ̄
µ∂µχ1 − iψ1σ

µ∂µψ̄1 + (1
2 ψ1

←→
∂z1
χ1 + m1ψ1χ1 + h.c.)

)

+

∫ R′

2

0

d4xdz2

(

−iχ̄2σ̄
µ∂µχ2 − iψ2σ

µ∂µψ̄2 + (1
2 ψ2

←→
∂z2
χ2 + m2ψ2χ2 + h.c.)

)

+
∫

d4x
(

m1/2 ψ0(χ1 − χ2) + h.c.
)

|z=0 (3.3)

Here 1, 2 refer to two throats. We will also assume that the BC in the absence of the UV
brane would have been ψ1|0,R′

1
= ψ2|0,R′

2
= 0. The equation of motion with respect to the

localized field will then enforce a modified BC

χ1|z=0 = χ2|z=0, (3.4)
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while integrating the bulk equations of motion for the χ1,2 fields around the UV brane (ε is
a small distance away from the UV brane) imply

ψ̄1|ε − ψ̄1|0 − m1/2 ψ0 = 0 (3.5)

ψ̄2|ε − ψ̄2|0 + m1/2 ψ0 = 0. (3.6)

Using the original BC at z = 0, we are left with

ψ1|z=ε = −ψ2|z=ε. (3.7)

These new BC’s will remove one of the combination of zero modes, and the remaining single
left handed zero mode will have the wave function

χ1(z) = Ae−m1z,χ2(z) = Ae−m2z, (3.8)

and the remaining overall coefficient A is determined by the normalization of the kinetic
term of this zero mode. If m1 = m2 < 0 then the zero mode will be localized at the two IR
ends of the two throats. For m1 = m2 > 0 the zero mode will be localized around the UV
brane in both throats, while for m1m2 < 0 it will be localized at the end of the throat with
positive m. This is illustrated in Fig. 4.

Figure 4: The wave function of the fermions for various choices of the signs of the bulk
masses. For the continuous cases m1m2 < 0, while for the case localized at the UV brane
m1, m2 > 0. The final case (with localization at the two ends) corresponds to m1, m2 < 0.
For all cases we have chosen |m1| = |m2| = 1/R′

1 = 1/R′
2.

We can easily generalize the above procedure for the case with arbitrary number N throats.
We will again be interested in the case of a single chiral fermion (for example a left handed
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one) propagating in all throats. Thus we need to start with a system that has a LH zero mode
in all throats (that is with BC’s ψi|0,R′

i
= 0). In order to remain with just one overall zero

mode we need to remove the additional zero modes via localized mass terms. One possibility
would be to add Majorana masses, but we are assuming that there are some conserved U(1)
charges that generically forbid Majorana mass terms. Thus we introduce N − 1 localized
RH modes ξi at the UV brane, and add the localized Lagrangian

∫

d4x
N−1
∑

i=1

N
∑

j=1

(

m1/2 ξ̃iKijχj + h.c.
)

|z=0
. (3.9)

We will assume that the rank of the N × (N −1) matrix K is N −1, so that there is not any
combination of the localized fields that can be decoupled, and only one zero mode is left in
the spectrum. The equations of motion of the localized fields, for the zero mode, will impose
the following N − 1 BC’s at zi = 0:

∑

j

Kijχj = 0 . (3.10)

The wave functions of the zero mode in the throats is

χj = Aje
−mjzj , (3.11)

where the coefficients Aj are determined, up to an overall normalization, by the BC’s on the
UV brane. Thus, the matrix K will determine in which throats the zero mode prefers to
live, while, as in the 2-brane case, the signs and magnitudes of the bulk masses can yeld to
a wide variety of different localizatrion patterns.

A simplified case, similar to the N vibrating rods for a scalar field, is given by the
following mass term:

∫

d4x
N−1
∑

i=1

(

m1/2 ξi(χi − χi+1) + h.c.
)

|z=0. (3.12)

This will then imply the BC’s χ1 = χ2 = . . .χN at z = 0, and the zero mode will be of the
form

χi = Ae−mizi, A =

[

N
∑

i=1

(

1 − e−2miR′

i

2mi

)

]− 1

2

. (3.13)

4 Gauge Fields

We now would like to extend the previous multi-throat set-up with scalars to allow gauge
fields to also propagate in the throats. The IR BCs can be derived exactly as one would do
for a single throat theory so we only have to discuss the BC at the UV brane. The bulk
Lagrangians we consider are in flat space:

Lbulk,i = − 1

4g2
5,i

F a 2
(i)MN . (4.1)
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The results for the warped case are briefly summarized at the end of this section.
To find the BC’s on the UV brane for the case where a single gauge field propagates

in all the throats let us start with N SU(M) gauge fields propagating in N throats and
consider how to describe in field theory the UV breaking of the N gauge groups to the
diagonal SU(M) gauge group. This can be achieved by introducing N − 1 bi-fundamental
Higgs fields localized at the UV brane at zi = 0:

LUV =
N−1
∑

α=1

(

Dµφ
†
αD

µφα − λ(Trφ†αφα − c2
α)

2
)

(4.2)

where φα transforms as a fundamental of SU(M)α and an anti-fundamental of SU(M)α+1.
The gauge covariant derivative is given by (T a are the generators of the gauge group in the
fundamental representation and Aa

(α) µ are the gauge fields in αth throat)

Dµφα = ∂µφα − i
(

Aa
(α) µT aφα − φαT aAa

(α+1) µ

)

(4.3)

As usual we expand the Higgs around its VEV:

φα =
eiπα/f

√
2

(v + hα) α = 1 . . . N − 1 , (4.4)

where φα, v, and hα are M × M matrices and πα = πa
αT

a and f 2 = Tr v†T aT av. Since we
are interested in breaking to the diagonal subgroup we will take v to be proportional to the
identity. The Lagrangians (4.1)–(4.2) contain some bulk and brane mixing terms involving
Aµ that we want to cancel out with a generalized Rξ gauge fixing term. Expanding up to
quadratic order:

Leff =
N

∑

i=1

∫ R′

i

0

dzi

{

1

g2
5,i

(

−1

4
F a 2

(i)µν +
1

2

(

∂zi
Aa

(i)µ

)2
+

1

2

(

∂µA
a
(i)5

)2 − ∂µAa
(i)5∂zi

Aa µ
(i)

)}

+
N−1
∑

α=1

1

2
Tr v†

(

1
f ∂

µπα − Aµ
(α) + Aµ

(α+1)

)(

1
f ∂µπα − A(α)µ + A(α+1)µ

)

v

+
N−1
∑

α=1

1

2
Tr ∂µh†

α∂
µhα − λ(Tr v†hα)

2 + ... (4.5)

Integrating the derivative mixing term by parts gives:

∫ R′

i

0

dzi A
a
(i)5∂zi

∂µA
a µ
(i) = −

∫ R′

i

0

dzi ∂zi
Aa

(i)5∂µAa µ
(i) +

[

Aa
(i)5∂µA

a µ
(i)

]R′

i

0
. (4.6)

The mixing terms between vectors and scalars are then cancelled by adding the bulk and
the brane gauge fixing Lagrangians (for simplicity we will take all the brane gauge fixing
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parameters to be equal to ξb):

LGF = −
N

∑

i=1

1

g2
5,i

1

2ξi

∫

dzi

(

∂µA
a µ
(i) − ξi∂zi

Aa
(i)5

)2

−
N

∑

i=1

1

2ξb

(

∂µA
a µ
(i) + ξb

(

f(πa
i − πa

i−1) −
Aa

(i)5

g2
5,i

))2
∣

∣

∣

∣

∣

zi=0

−
N

∑

i=1

1

2ξb

(

∂µA
a µ
(i) + ξb

Aa
(i)5

g2
5,i

)2
∣

∣

∣

∣

∣

zi=R′

i

, (4.7)

(with the convention that πa
0 = 0 and πa

N = 0). The unitary gauge is realized in the limit
where all the ξ’s are sent to infinity. The full Lagrangian then leads to the following equation
of motion for Aµ (qi denotes the 4D momentum):

∂zi

(

∂zi
A(i)µ

)

+

(

q2ηµν +

(

1

ξi
− 1

)

qµqν

)

Aν
(i) = 0 , (4.8)

while the BCs, fixed by requiring the vanishing of the boundary variation terms in Eq. (4.5),
are:

∂zi
Aa

(i)µ − g2
5,if

2
(

Aa
(i)µ − Aa

(i+1)µ

)

= 0 . (4.9)

In the infinite VEV limit, the corresponding UV BCs are

Aa
(i) µ = Aa

(i+1) µ (4.10)

∂z1
Aa

(1) µ

g2
5,1

+ . . . +
∂zN

Aa
(N) µ

g2
5,N

= 0 (4.11)

These BCs are analogous to case of scalar fields propagating in multiple throats, thus the
KK expansion of these fields will have identical properties for the two cases.

Next we would like to discuss the question of under what circumstances will there be
physical modes in the scalar components. The bulk equation of motion for the scalar fields
A(i)5 is:

ξi∂
2
zA

a
(i)5 + q2Aa

(i)5 = 0 , (4.12)

From this we see that the only physical modes that can survive in the unitary gauge limit
ξ → ∞ are those with q2 = 0. Thus for theses modes we have

∂2
zA

a
(i)5 = 0 . (4.13)

The BC’s for the π’s and A(i)5’s are obtained by requiring that the variation of the action
vanishes at the UV brane:

δLscalar = −
N−1
∑

α=1

∂µ∂
µπa

αδπ
a
α +

N
∑

i=1

ξi
2g2

5,i

δAa
(i)5∂zi

Aa
(i)5|zi=0 (4.14)

−
N

∑

i=1

ξb

(

f(πa
i − πa

i−1) −
Aa

(i)5

g2
5,i

)∣

∣

∣

∣

zi=0

(

f(δπa
i − δπa

i−1) −
δAa

(i)5

g2
5,i

)

(4.15)
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In the unitary gauge the terms in the A5 and π equations of motion that are multiplied by
gauge parameters must vanish. So we see that πa

1 and πa
N−1 are fixed in terms of Aa

(1)5 and
Aa

(N)5. The remaining N − 2 equations from ξb terms fix the remaining πa
i ’s and require

0 =
N

∑

i=1

Aa
(i)5

g2
5,i

∣

∣

∣

∣

zi=0

(4.16)

By requiring that the terms proportional to ξi vanish, we also obtain

∂zi
Aa

(i)5|zi=0 = 0 (4.17)

We can see that as expected, the BCs for the A5 components are the same as for the Aµ

components, except that the Dirichlet BC is replaced by a Neumann BC and vice versa. The
BCs (4.16)–(4.17) together with the bulk equation of motion implies that for any physical
mode the A(i)5’s have to be constant in every throat, and due to the BC (4.16) these constants
have to add up to zero. Thus there can at most be N − 1 independent scalar modes. How
many of these N − 1 are actually physical will depend on the BCs at the IR branes. If there
is no additional symmetry breaking on any brane, or if there is symmetry breaking on at
most one brane, then none of the scalar A(i)5 modes will be physical. The reason is that
the BC on a given IR brane for A(i)5 will be Neumann ∂zi

Aa
(i)5|zi=R′ = 0 for the case when

a particular generator a is broken by a VEV of a scalar field on the brane, while it will be
Dirichlet Aa

(i)5|zi=R′ = 0 for the case there is no symmetry breaking. If there is a Dirichlet
BC at the bottom of at least N − 1 throats then at least N − 1 of the A(i)5’s are set to
zero, and since all N have to also add up to zero, we see that they all have to vanish. So
there is no physical mode left. Thus in order for a physical scalar zero mode to exist in any
particular gauge direction, the generator corresponding to that direction has to be broken
at least twice (on the bottom of at least two throats). This also immediately implies, that if
a particular generator is broken on k throats, there will be k − 1 physical scalar zero modes
appearing.

The counting of the physical scalar modes has a very simple holographic interpretation
(at least for the case when all the throats are warped). If the extra dimensions were warped,
then the set-up we have produced would correspond to N different 4D CFT’s (corresponding
to the bulks of the warped throats), each of which has an SU(M) global symmetry. The set-
up around the UV brane ensures that only the diagonal subgroup of these global symmetries
is actually gauged. Then if the symmetry is broken on the bottom of k throats that will
correspond to k of the CFT’s spontaneously breaking its own global symmetry, each of
which will produce a Goldstone boson. However, since the diagonal subgroup is gauged,
one combination of these Goldstone bosons is eaten, leaving us with k − 1 physical massless
Goldstone modes. We have seen that the BC’s derived here exactly reproduce this expected
answer. Even though we have only considered the flat throat case here, the generalization
to the warped case is straightforward. With bulk Lagrangians of the form

Lbulk,i = −K(i)(zi)
1

4g2
5,i

F a 2
(i)MN , (4.18)

12



following the same procedure as before, we obtain the following BC’s for the Aµ components
in the infinite VEV limit

Aa
(i) µ = Aa

(i+1) µ (4.19)

K(1)(z)

g2
5,1

∂z1
Aa

(1) µ + . . . +
K(N)(z)

g2
5,N

∂zN
Aa

(N) µ = 0 (4.20)

while the BC’s for the A5 components read

0 =
N

∑

i=1

K(i)

g2
5,i

Aa
(i)5

∣

∣

∣

∣

zi=R

(4.21)

0 = ∂zi

(

K(i)A
a
(i)5

)

|zi=R (4.22)

5 Gravity

Let us finally discuss how an appropriate gravitational background and fluctuations could be
obtained in these throats. For useful references for this section see [12]. For the background
metric we will be assuming that it is conformally flat in every throat and is given by

g(i)
MN = e−Ai(zi)(dxµdxνηµν − dz2

i ), (5.1)

where the coordinates zi run from the UV brane zi = 0 to the individual IR branes zi = R′
i.

We will assume that the metric is continuous at the UV brane, that is

Ai = Ai+1 = 0. (5.2)

Here we have rescaled the overall warp factor on the UV brane to be equal to one. If there
are different cosmological constants Λi in the different throats, then the warp factors will be
given by

Ai(zi) = 2 log(zi/Ri + 1), (5.3)

where the AdS curvatures in the different throats are given by their usual expressions

1/R2
i = −κ

2Λi

6
, (5.4)

and κ2 is the 5D Newton constant (related to the 5D Planck scale by κ2 = 1/(2M3
∗ )).

These will completely fix the solutions, however one still has to satisfy the generalized Israel
junction condition [13]. In this case it will be given by

∑

i

∂zi
Ai|zi=0 =

2κ2

3
T, (5.5)
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where T is the tension of the junction (i.e. the UV brane). This will just result in the usual
Randall-Sundrum (RS)-type fine tuning between the brane tensions and the various throat
cosmological constants:

∑

i

1

Ri
=
κ2

3
T. (5.6)

One can also find the graviton KK modes easily in this background. Assuming that the
metric fluctuations are of the form

ds2
i = e−Ai(zi)(dxµdxν(ηµν + h(i)

µν(x, zi)) − dz2
i ) (5.7)

and using transverse traceless gauge (that is neglecting the radion-type scalar solutions)
hµ
ν = ∂µhµν = 0 we find that the Einstein equations in the throats give the usual RS-type

equations:

(∂µ∂µ − ∂2
zi
)h(i)

µν +
3

2
∂zi

Ai∂zi
h(i)

µν = 0. (5.8)

All the terms including the brane tension are compensated by the effects of the background
metric, so the generalized Israel junction condition at the UV brane for the perturbations
will just be:

∑

i

∂zi
h(i)

µν = 0, (5.9)

while the metric should still be continuous on the UV brane requiring

h(i)
µν = h(i+1)

µν . (5.10)

Thus the BC’s for the graviton modes are completely analogous to the case of scalars and
gauge bosons with a single zero mode. For the particular case of a graviton zero mode in
a warped throat (à la RS), we can easily solve these equations, since the solution of (5.8)
are just constant in every throat, with the constants equal at the UV brane. The overall
normalization would then be fixed by calculating the kinetic term of the graviton zero mode.

6 Applications

6.1 A throat for every family

One obvious application of the multi-throat construction is to have a set-up where the gauge
bosons propagate on all the throats but a family of quarks and leptons lives in a single throat.
With three throats, we can have the three families each propagating in different throats. In
order to be able to generate mixings among different families the Higgs field has to have
an overlap with the UV brane. Thus one would expect that in order to solve the gauge
hierarchy problem one would have to make the setup supersymmetric. The supersymmetric
flavor problem could then be resolved geometrically, if one assumes that the three throats
were identical (that is they are related by an S3 exchange symmetry). In this case one could
imagine that the only source of supersymmetry breaking was due to strong dynamics at the

14



bottom of the throats giving rise to equal soft supersymmetry breaking terms localized on
the IR branes. Since we are assuming that the three throats are identical, one will get equal
soft breaking terms for the three families, and since they are separated in different throats
they will be flavor diagonal. In order for the Higgs to pick up soft breaking terms it has
to then propagate in the three throats. Since we are assuming that the three throats are
identical this will also imply that the Yukawa couplings in the throats are equal for the three
families. A hierarchy among the three families can then be obtained by adding terms to the
UV brane such that the VEV’s of the Higgses in the three different throats will be the largest
for the throat containing the third generation, and the smallest for the first generation. The
mixings among the generations and the differences of masses within a generation can then
be adjusted by adding some additional UV-brane localized Yukawa couplings. The setup is
illustrated in Fig. 5.

νeu,d,e,    

τ,ντt,b,    µ,νµc,s, 

SUSYSUSY

SUSY

S3

SU(3)xSU(2)xU(1)

Figure 5: Illustration of the throat construction of the model with a throat for every family.

6.2 A GUT model for doublet-triplet splitting

One can embed this scenario in a model of doublet-triplet splitting in SUSY GUTs along the
lines of [15,16]. Thus these GUT models can be given a simple geometric interpretation. The
essence of the model in [15] is to have three SU(5) groups broken by various bifundamental
fields Zi and Z̄i to the diagonal SU(3)× SU(2)×U(1) subgroup. A key element is the S3

exchange symmetry of the three SU(5) factors and an additional Z2 symmetry that will
forbid direct mass terms of the Higgs fields.

The geometric construction is again based on a supersymmetric three-throat setup, each
of which have an SU(5) group propagating in them. The three throats have again an S3

exchange symmetry as in Fig. 6 . We assume that half of the eight supercharges are broken
on the IR brane via BCs, and thus only an N = 1 set of fields have light modes. On the UV
brane we introduce the bifundamental fields Zi, Z̄i and a generic superpotential (as in [15])

W (Z)UV = M1

∑

j

(ZjZ̄j) +
1

M2

∑

j $=k

(ZjZ̄j)(ZkZ̄k) + . . . , (6.1)
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SU(5)

5,10
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SU(5)
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_

1

2

3

Figure 6: Illustration of the throat construction of the SU(5)3 model.

where the extra terms correspond to additional dimension four superpotential terms. Among
the possible set of supersymmetric vacua are those with VEVs

〈Z1〉 = 〈Z̄1〉 = v1 diag(1, 1, 1, 0, 0), (6.2)

〈Z2〉 = 〈Z̄2〉 = 〈Z3〉 = 〈Z̄3〉 = v2 diag(1, 1, 1, 1, 1). (6.3)

With these VEVs the three SU(5)’s in the three throats are broken to just the SM groups.
There are six separate Higgs fields Hi, H̄i (which are originally six hypermultiplets, but due
to the BC’s on the IR brane only one chiral component will have a zero mode). In order to
forbid the direct mass term for these fields one needs to assume that there is a Z2 symmetry
{H̄, Z, Z̄} → −{H̄, Z, Z̄} which will only allow the superpotential coupling on the UV brane

W (H, Z)trilinear = λ
∑

i,k

HiZikH̄k, (6.4)

where we have defined Zik = Zj for j += i, k. With this additional UV brane superpotential
all components of the Higgs fields Hi, H̄i will get a mass of order v1,2, except for one pair
of SU(2) doublets, which will be identified with the MSSM Higgs doublets. This will also
automatically solve the µ-problem, and an order Mweak µ-term can be generated if after
minimizing the potential for the Z, Z̄-fields the VEV’s will get shifted due to the addition
of the soft breaking terms. The model of [16] can be implemented similarly, with the added
convenience that the UV brane VEV’s of the Z, Z̄ can now be interpreted as Wilson lines
along the coordinates parameterizing the direction along the UV head.

6.3 A simple geometric construction for trinification

Quite a lot of effort has been devoted [17] to naturally implement a grand unified trinifica-
tion [18] model based on the gauge group SU(3)3/Z3 into extra dimensions. The multi-throat
construction clearly offers a simple implementation for such a theory. In 4D the gauge group
is given by SU(3)c×SU(3)L×SU(3)R, with SU(3)c being ordinary QCD, SU(2)L ⊂ SU(3)L,
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and Y = − 1√
3
(T 8

L +
√

3T 3
R + T 8

R). One family of SM matter can be embedded into the rep-

resentation 27 = (3, 3̄, 1) + (1, 3, 3̄) + (3̄, 1, 3). This contains the usual SM fermions, plus
some additional massive vector-like fields: an additional SU(2)L singlet vector-like bottom,
an additional vector-like SU(2)L doublet (color singlet) plus two right handed neutrinos.

The symmetry breaking is obtained by at least two Higgs fields in the same representa-
tion 27. Clearly, since QCD is unbroken only the (1, 3, 3̄) component of these higgses can
get a VEV, and the assumption is that one of these higgses Φ will get a VEV of the form

〈Φ〉 =





v



 (6.5)

breaking SU(3)L × SU(3)R to SU(2)L × SU(2)R × U(1)B−L, while the other Higgs χ has a
VEV of the form

〈χ〉 =





v′



 (6.6)

breaking the group to a different 3−2−2−1 subgroup. In total the two VEV’s would leave
3-2-1 invariant. Electroweak symmetry breaking is achieved if further (electrically and color
neutral) components of the Higgs fields get VEV’s of the order of the electroweak scale.

The extra dimensional construction based on throats would work as follows: fermions
are bi-fundamentals under the SU(3) groups, and assuming they live in separate throats, the
individual SU(3) gauge bosons have to be propagating in two separate throats each:

SU(3)c → (z1, z2), SU(3)L → (z2, z3), SU(3)R → (z1, z3). (6.7)

This can be achieved using a construction for the gauge fields of the sort presented in Sec. 4.
Fermions are then localized in single throats, obviously with the above assignment of the
gauge groups we would find

(3, 3̄, 1) → z2, (1, 3, 3̄) → z3, (3̄, 1, 3) → z1. (6.8)

This is illustrated in Fig. 7. Since the symmetry breaking should be felt by all the
fermions, the Higgs fields should be localized on the Planck brane. Thus in order to explain
the hierarchy the theory should be supersymmetric. Fermion hierarchies could then be
explained by varying the localization parameters of the fermions.

7 Conclusions

We have shown how a general theory on a manifold with many throats can be described in
a field theory limit as a collection of five dimensional warped spaces intersecting on a single
UV brane. We have also shown how the Lagrangian on the UV brane determines the BCs
for the extra dimensional fields, giving examples with scalars, gauge bosons, and fermions.
This set-up provides a whole new set of tools for model builders to exploit. We have shown
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SU(3)c

SU(3)
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(1,3,3)
_
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SU(3)
R
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_

Figure 7: Illustration of the throat construction of the model for trinification.

the appropriate BCs for scalar, fermion, gauge boson and graviton fields. We have provided
three very simple sample applications of these ideas. In the first the three generations of the
MSSM propagate in separate throats, and the supersymmetric flavor problem is solved via
the exchange symmetry of the three throats. The second example we show how this scenario
can be embedded in a beautiful model of doublet-triplet splitting in SUSY GUTs which can
be also interpreted geometrically. The third example provides a geometric implementation
of trinification.
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