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Abstract

We construct a calculable model of low-energy direct gauge mediation making use

of the metastable supersymmetry breaking vacua recently discovered by Intriligator,

Seiberg and Shih. The standard model gauge group is a subgroup of the global symme-

tries of the SUSY breaking sector and messengers play an essential role in dynamical

SUSY breaking: they are composites of a confining gauge theory, and the holomorphic

scalar messenger mass appears as a consequence of the confining dynamics. The SUSY

breaking scale is around 100 TeV nevertheless the model is calculable. The minimal

non-renormalizable coupling of the Higgs to the DSB sector leads in a simple way to

a µ-term, while the B-term arises at two-loop order resulting in a moderately large

tan β. A novel feature of this class of models is that some particles from the dynamical

SUSY breaking sector may be accessible at the LHC.

While supersymmetry elegantly solves the fine tuning problem of the Higgs mass, and
may even explain the origin of the weak scale by relating it to the supersymmetry breaking
scale, a generic supersymmetric extension of the standard model (SM) itself raises a number
of problems. These problems include the µ-problem (why the single dimensionful supersym-
metric parameter is related to the supersymmetry breaking scale) and the little hierarchy
problem (which is a percent level fine-tuning problem emerging from the non-observation of
the Higgs and superpartners at LEP2).

One of the main issues that was appreciated early on in supersymmetric model building
is the problem of flavor changing neutral currents (FCNCs): for generic soft supersymme-
try breaking scalar masses there are additional one-loop diagrams without GIM suppression
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contributing to FCNC’s. This problem is quite generic in models with high scale supersym-
metry breaking, where non-trivial flavor physics is likely to affect the soft breaking scalar
masses. This issue led to interest in gauge mediated SUSY breaking [1, 2] (GMSB), where
the scale of supersymmetry breaking can be below the flavor breaking scale, and the soft
masses themselves are generated via SM gauge interactions. As a result the soft breaking
mass terms will only depend on the SM quantum numbers and be flavor independent. While
many realistic models were constructed (see [3] for a review), they were quite complicated
and typically had several layers of interactions (messengers) to communicate SUSY breaking
to the Standard Model fields. Simplifying these models so that messengers would directly
participate in the dynamics of the dynamical supersymmetry breaking (DSB) sector proved
difficult. Even though viable direct gauge mediation models exist [4], they typically require
rather large messenger scales. While these scales could be sufficiently low to provide sig-
nificant theoretical control in studying the dynamics of the DSB sector, one of the main
promises of gauge mediation — the possibility that in models with a low SUSY breaking
scale the DSB sector itself could in principle be directly observable in future experiments —
was never realized. DSB models without a hierarchy of scales are typically strongly coupled
and as a result one can at best establish the existence of a SUSY breaking minimum but not
the details of the spectrum.

In this paper we make use of the recent discovery by Intriligator, Seiberg, and Shih [5]
(ISS) of metastable SUSY breaking vacua. From the model building point of view the main
new feature of the models of [5] is that the supersymmetry breaking vacua are located near
the origin of the moduli space yet are calculable. This raises the hope that a calculabe low
scale direct mediation model can be obtained. In this paper we show the first example of
such a model. As in the ISS case the DSB sector of our model has a fairly simple dual
description in the UV: it is just SUSY QCD with some masses and higher dimensional
operators added. The higher dimensional operators can be suppressed by scales as high as
1011 GeV. Supersymmetry breaking is triggered by dynamical symmetry breaking and while
the SUSY breaking scale is as low as 100 TeV, the effective low energy theory is calculable.
Since the fine-tuning depends logarithmically on SUSY breaking scale, it is significantly
reduced in our model. Furthermore, the µ-term could be generated by the same dynamics
that leads to SUSY breaking.

A simple ISS-type model

We will start out with a simple toy model and gradually add a few features in order
to make a realistic SUSY breaking model. We intend to make use of the ISS models by
embedding the SM gauge group into the flavor symmetry of the DSB sector. Thus the flavor
symmetry should at least be SU(5). However since at least one field charged under the
flavor symmetry gets a VEV, the minimal size of the flavor symmetry in the DSB sector is
SU(6). To focus on the simplest possibility we assume that there is no gauge group in the
magnetic description. Thus we are led to consider the following fields charged under the
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global symmetries

SU(6) U(1) U(1)R

φ̃ 1 0
¯̃φ −1 0

M̃ Ad + 1 0 2

, (1)

with the superpotential

W1 = ¯̃φM̃ φ̃− hf 2TrM̃ . (2)

The global symmetries of this model are just the symmetries of an s-confining SU(5) gauge

theory with 6 massive flavors [6,7]. Indeed, we can identify M̃ , φ̃, and φ with mesons, baryons,
and antibaryons of the electric description respectively. The linear term in the superpotential
above then arises from a mass term in the microscopic theory with the identification mΛ ≈
hf 2, while the cubic term is required to ensure the correct mapping of the two descriptions.
Finally instantons generate an operator

Winst. =
det M̃

Λ3
, (3)

where Λ is the intrinsic holomorphic (dynamical) scale of the microscopic theory. As ex-
plained in ref. [5], the term in Eq. (3) is repsonsible for ensuring that there is a SUSY
preserving global minimum with

〈M̃〉 ∼ f

(
Λ

f

) 3

5

. (4)

There is also a metastable SUSY breaking vacuum at 〈M̃〉 ∼ 0, which can have a lifetime
much longer than the age of the Universe for f & Λ. Near this SUSY breaking vacuum,
the instanton term is an irrelevant operator that we can ignore (unless we want to calculate

the tunnelling rate to the true vacuum state). SUSY is broken since the matrix ¯̃φφ̃ has rank
one, so

∂W1

∂M̃J
I

= ¯̃φ
I
φ̃J − hf 2δI

J '= 0 . (5)

In order minimize the scalar potential energy, one flavor (in an appropriate basis) will get a

VEV, ¯̃φ
K
φ̃K = hf 2, and the global SU(6) symmetry will be spontaneously broken to SU(5).

Gauging the flavor symmetry

We will gauge the standard model (SM) subgroup of SU(5) in which case vacuum align-
ment [8] will prefer the VEV to align so as to preserve the gauge symmetry. Thus it is
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convenient to write the fields in a form where the unbroken symmetry is manifest, so we
split φ̃J into φj and ψ (where 〈ψ〉 '= 0) and similarily

M̃ =

(
M j

i N j

N̄i X

)
. (6)

So our field content can be rewritten as 1

φ φ̄ ψ ψ̄ M X N N̄

SU(5) 1 1 Ad + 1 1

U(1)R 0 0 0 0 2 2 2 2

, (7)

with a superpotential

W2 = φ̄Mφ+ ψ̄Xψ + φ̄Nψ + ψ̄N̄φ− hf 2 (TrM + X) . (8)

Let us discuss the dynamics entailed by this superpotential. The equation of motion for
X leads to a non-zero ψ̄ψ VEV. This in turn marries φ (φ̄) with N̄ (N) making sure that
they are massive and do not obtain VEVs. Finally, SUSY is broken by the F -component of
TrM . Rescaling TrM so that its kinetic term is canonically normalized, we obtain

FTrM =
√

5hf 2 . (9)

As pointed out in [5] there are a number of massless states at tree-level. Some of these
are goldstone bosons of the spontaneously broken SU(6) symmetry. Since SU(6) can be
explicitly broken by the superpotential and is certainly broken by gauging the SM subgroup,
these fields can obtain masses at one-loop level once SUSY is broken. There are also massless
scalars corresponding to pseudo-flat directions of the O’Rafeartaigh model. As shown in [5]
these will also obtain soft masses at one-loop through which can be easily analyzed using the
Coleman-Weinberg potential. In particular, the field with the non-vanishing F -term, TrM ,
is stabilized at the origin. Finally, the fermionic components of M remain massless.

Communicating SUSY breaking to the SM fields

Let us now describe how SUSY breaking is communicated to the SM superpartners. The
fields φ̄ and φ couple directly to the SUSY breaking and obtain holomorphic soft mass terms.
In addition, N̄ and N will obtain holomorphic soft mass terms due to the supersymmetric
mixing (through 〈ψ〉) with φ̄ and φ in the superpotential. Once the SM subgroup of SU(5)
is gauged these fields will act as messengers. It is important to notice that in the absence of
a VEV for TrM the mass matrix of scalar messengers would have one vanishing eigenvalue
at tree level. This is problematic for two reasons. First, we cannot allow light scalars with
SM charges. Second, messenger multiplets with a vanishing supertrace of the mass matrix

1We only show quantum numbers under symmetries relevant for the following analysis.
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and massless scalars do not usually contribute to soft scalar masses at two-loops (although
non-trivial mixing of the messengers in our model modifies the calculation of gauge mediated
contributions). There is one more problem in the model presented so far – at the minimum
of the potential there is an accidental discrete R-symmetry which forbids gaugino masses [5].
In this case this is a Z10 R-symmetry. This is the discrete subgroup of the U(1)R in (7) that
is left unbroken by (3). In fact, the same R-symmetry forbids the soft masses for fermionic
components of M . Thus in order to solve these problems we need to generate a scalar VEV
for the field M . Below we will show two possibilities for how to achieve that.

Once we have a VEV for TrM , the fermion messenger mass matrix will have the see-saw
form

mf =

(
〈M〉 〈ψ〉
〈ψ̄〉 0

)
. (10)

A Majorana gaugino mass will now be generated at one-loop as in more standard gauge
mediation models. Notice that to leading order in the SUSY breaking parameter F the
gaugino mass is proportional to Tr(m−1

f F) and it vanishes in our model.2 However, terms
which are higher order in F are non-vanishing and we have verified that the F3/m5

f term is
non-vanishing. Since F/m2

f ∼ 1 in our model these contributions are not suppressed. The
masses of both the scalar and fermionic superpartners (while qualitatively similar) will differ
from predictions of usual gauge mediation scenarios, due to a more complicated messenger
spectrum.

Scalar components of M will obtain contributions to their masses both from the Coleman-
Weinberg potential and the usual gauge mediated loops (except for two scalars that are
neutral under the Standard Model). Gauge mediated contributions will be dominant for
sufficiently small h expected from an underlying microscopic description. Finally, we note
that the fermionic components of M will obtain masses both from gauge mediation and from
Yukawa coupling to messengers, φ̄Mφ. Thus these particles may have TeV scale masses,
and be accessible at the LHC. Since M contains SU(5) adjoints some of the scalars and
fermions will be colored and thus can be easily produced. The details of the spectrum and
experimental signatures will be studied elsewhere.

Generating the M-VEV via singlet interactions

We have seen above that in order to generate a non-vanishing gaugino mass we need to
generate a scalar VEV for M . Here and in the next paragraph we show two possibilities
for that. While the models seem quite similar the implications of the two mechanisms are
actually quite different. In both cases we modify the theory slightly by adding the singlets
S, S̄, Z, Z̄. In the first case these fields will be fundamental singlets and the discrete R-
symmetry is broken via explicit superpotential interactions:

W = φ̄Mφ + ψ̄Xψ + φ̄Nψ + ψ̄N̄φ− hf 2 (TrM + X)

+(d TrM + m)SS̄ + m′(SZ̄ + ZS̄) . (11)

2We thank Hitoshi Murayama for pointing this out to us.

5



!4 !3 !2 !1
Tr M

110

120

130
VCW

Figure 1: Plot of the Coleman-Weinberg potential (in arbitrary units). The horizontal axis
is TrM in units of

√
F .

The new superpotential terms necessarily break the R-symmetry, due to the simultaneous
presence of both the TrM SS̄ and the SS̄ terms. The last terms in this superpotential
(proportional to m′) ensure that supersymmetry is not restored via VEV’s of S and S̄.
There are now two interactions contributing to the one-loop potential for M . Loops of
the singlets S and S̄ will tend to generate an M VEV to cancel the mass term for these
fields while loops of φ̄ and φ will generate a positive contribution to the mass squared of
TrM . Generically the vacuum will be shifted from the origin. In order to keep the S, S̄
fields from obtaining VEV’s (so that SUSY breaking originates fully from the F-term of
M , and not partly from the singlet sector) we need to assume m′2 > dhf 2. The one-loop
Coleman-Weinberg potential for spontaneously broken supersymmetric theories

1

64π2
STrM4 log

M2

Λ2
(12)

can be evaluated for the potential following from (11). In order for the minimum of the
potential to be significantly shifted from the origin, the interaction strength of the S, S̄ fields
to TrM should not be very small, otherwise their effect around the origin will be negligible.
As an example we show the Coleman-Weinberg potential along the TrM direction in units
of

√
hf 2, for parameters m = 4, m′ = 1.5, d = 0.4 (again in the same units). We can see

that for these parameters the minimum is at TrM ∼
√

5hf 2. This implies that messenger
multiplets obtain supersymmetric contributions to their masses, mm, which are comparable
to splittings withing the multiplet, F/m2

m ∼ 1.

Generating the M-VEV via gauge interactions

A perhaps more elegant solution for generating the VEV for M is by using the mechanism
of [9]. Instead of adding the explicit mSS̄ mass term one can maintain the discrete R-
symmetry in the superpotential, and only break it spontaneously via the VEV of M . This
has the added benefit that imposing this discrete R-symmetry can forbid some (but not
all) other unwanted terms in the superpotential (for example TrM2 which would restore
supersymmetry).

To achieve the spontaneous breaking of the R-symmetry (by forcing the M VEV from
the origin) we gauge a U(1) symmetry under which S, Z have charges +1 and S̄, Z̄ have
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Figure 2: Plot of the Coleman-Weinberg potential for the case with a U(1) gauge symmetry
(in arbitrary units). The horizontal axis is TrM in units of

√
F .

charges −1. The superpotential will now be

W = φ̄Mφ + ψ̄Xψ + φ̄Nψ + ψ̄N̄φ− hf 2 (TrM + X)

+ d TrMSS̄ + m′(SZ̄ + ZS̄) . (13)

In order for these U(1) gauge fields to contribute to the CW potential we need to pick
the parameters of the theory such that S obtains a VEV. The reason for the additional
contributions to the CW potential is that in this case the Z, Z̄ directions will be related to
the M VEV. As a consequence SUSY breaking will not fully originate from the dynamical
sector, but the S, Z sector will also contribute. Minimizing the CW potential one can find
minima similar to those in [9] for a wide range of perturbative U(1) couplings g and small
couplings d. An example for such a minimum is shown in Fig. 2 for d = .01, g = 0.1, and
m′ = 0.05 (in units of

√
F).

Generating the SUSY breaking linear term via dynamics

We now turn to the origin of the linear term which leads to SUSY breaking. It can be
generated from a condensate of an additional supercolor sector (this possibility has recently
been also emphasized in [10]). One of the simplest possibilities is an SU(2)sc gauge group
with 2 flavors. Thus our complete SUSY breaking model has the following fields

φ φ̄ ψ ψ̄ M X N N̄ S S̄ Z Z̄ p p̄ T

SU(2)sc 1 1 1 1 1 1 1 1 1 1 1 1 1

U(1)gauge 0 0 0 0 0 0 0 0 1 −1 1 −1 0 0 0

SU(5) 1 1 Ad + 1 1 1 1 1 1 1 1 1
SU(2) 1 1 1 1 1 1 1 1 1 1 1 1 1

. (14)

The full superpotential of the model is

W = φ̄Mφ + ψ̄Xψ + φ̄Nψ + ψ̄N̄φ−
h

Λ2
UV

p2p̄2 (TrM + X)

+c T pp̄ + d TrMSS̄ + m′(SZ̄ + ZS̄) . (15)
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This superpotential can be enforced for example by the discrete Z10 R-symmetry under
which M, X, N, N̄, Z, Z̄, T have charge 2, and p, p̄,φ, φ̄,ψ, ψ̄, S, S̄ have charge 0. This is
anomaly free under the SU(2)sc and the U(1)gauge. However, it is still not the most generic
superpotential term allowed by the symmetries. The term XSS̄ would also be allowed by the
symmetries, but has to be assumed to vanish. However, other dangerous terms like Tr M2

are excluded by this discrete symmetry. The couplings to the singlet T give mass terms for
the mesons pp̄. Since the supercolor sector has a deformed quantum moduli space this leaves
the “baryons” B = p2 and B = p̄2, with non-zero VEVs. Thus the strong dynamics enforces

p2p̄2 = BB̄ = Λ4

sc = f 2Λ2

UV (16)

where Λsc is the intrinsic holomorphic scale for the supercolor gauge group, and the last part
of the equation can be taken as the definition of the scale f .

Generating the µ-term

To complete the construction of a phenomenologically relevant model we need to generate
the terms in the Higgs potential necessary for electroweak symmetry breaking. To obtain a
µ term we add the superpotential term

Wµ = β
p2p̄2

Λ3
UV

HuHd . (17)

Then around the scale where the supercolor group gets strong the model generates a µ term
of order

µ ∼ β f

(
Λsc

ΛUV

)2

. (18)

The soft SUSY-breaking B-term, however, vanishes at tree level. As noticed in [11] a B-term
is however generated at two loops (since M2 itself is generated at one-loop order)

B ∼
3α2

2π
M2µ ln

(
F

M2µ

)
. (19)

This leads to a B-term that is small compared to the square of electroweak scale (by a factor
of α2) and consequently results in a large tanβ, of order 10–50.

The microscopic description of the theory

We will assume that all the singlets S, S̄, Z, Z̄, and T are elementary fields both in the
effective and microscopic description. Above the scale Λ the microscopic dual description is
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a generalized SUSY QCD:

SU(5) SU(2)SC U(1)gauge SU(5) SU(2) SU(2) Z10

Q 1 0 1 1 1
Q̄ 1 0 1 1 1
q 1 0 1 1 1 1
q̄ 1 0 1 1 1 1
p 1 0 1 1 0
p̄ 1 0 1 1 0
S 1 1 1 1 1 1 0
S̄ 1 1 −1 1 1 1 0
Z 1 1 1 1 1 1 2
Z̄ 1 1 −1 1 1 1 2
T 1 1 0 1 2

, (20)

with a superpotential

W = m SS̄ + m′(SZ̄ + ZS̄) + c T pp̄ + β
p2p̄2

Λ3
UV

HuHd (21)

+
d̃

ΛUV
TrQQ̄ SS̄ −

h̃

Λ3
UV

p2p̄2
(
Tr QQ̄ + qq̄

)
.

The mapping between the two descriptions is M ↔ QQ̄/Λ, X ↔ qq̄/Λ, N ↔ Qq̄/Λ, etc.
Thus (with h̃ and d̃ of order 1) we expect that natural values of h and d are of order

h ∼ d ∼
Λ

ΛUV
. (22)

Estimate of scales

We are now ready to present some typical values for the scales in this theory. To have
a low-scale model of SUSY breaking we are assuming that

√
F ∼ 100 TeV. We are also

assuming that the messenger mass scale determined by Tr M is of the same order ∼ 100 TeV.
The highest possible value for the UV scale ΛUV can be obtained by calculating the Landau
pole for the QCD coupling. This depends quite sensitively on the mass of the components
of the SU(5) adjoint field M . If we assume that the leading contribution to their masses
(along with the superpartners of the SM fields) are the gauge mediated contributions at 1
TeV, then we find the scale for the Landau pole to be around few·1011 GeV. This can be
increased slightly (by a factor of at most 10) by decreasing the ratio Λ/ΛUV . Thus a safe
assumption would be a choice satisfying ΛUV ≤ 1011 GeV. Finally, we need to generate a
µ-term of order 100 GeV. The scales thus should satisfy the relations:

ΛΛ4
sc

Λ3
UV

∼ F ∼ (100 TeV)2,
Λ4

sc

Λ3
UV

∼ µ ∼ 100 GeV, ΛUV ≤ 1011 GeV. (23)
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Assuming we choose the parameters corresponding to the potential in Fig. 2 we can satisfy
these constraints by:

Λ ∼ Λsc ∼ 108 GeV, ΛUV ∼ 1010 GeV, m′ ∼ 5 · 103GeV, d̃ ∼ 1. (24)

In this case the bounce action interpolating between the SUSY breaking vacuum and the
SUSY preserving vacuum can be estimated to be

Sb ∼ (∆M)4/F2 ∼ 5 · 108, (25)

thus the tunneling rate is suppressed by a factor of e−108

, which suggest that the metastable
vacuum should have a lifetime τ much longer than the age of the Universe (∼ 4× 1017s). A
back-the-envelope-estimate gives

τ ∼
1

100 GeV

1s

1024 GeV−1

√
2π

Sb
eSb ∼ 102·108

s . (26)

The little hierarchy

The minimal model described above provides a simple implementation of minimal gauge
mediation with a single messenger field (up to the deviations discussed in the previous section
due to the mixing of the messenger field with non-messengers). One of the main drawbacks
of minimal gauge mediation is the little hierarchy problem. There are usually three separate
sources for the little hierarchy problem in gauge mediated models. The first and most
important is the the large mass ratio of the squark and slepton/Higgs masses dictated by
the quantum numbers of the messenger fields, and is specific to gauge mediated models. The
other two sources of fine tuning are generic to supersymmetric extensions of the SM. One of
these is the logarithmic running of the soft mass parameters, which in this case is cut off at
the messenger scale and could logarithmically enhance the soft mass parameters appearing
in the Higgs potential, which thus usually requires a small stop mass to avoid fine-tuning.
Finally, one also needs to make sure that the Higgs mass is above the 115 GeV LEP2 bound,
which usually requires a heavy stop mass.

One of these issues is naturally resolved here, since we can take the messenger scale
to be around 100 TeV, therefore the logarithmic enhancement of the soft masses is very
small. The stop/slepton mass ratio can be lowered for example by changing the number
of doublet messengers vs. triplet messengers [12]. Another even simpler possibility would
be to change the hypercharge assignments of the messengers. However, these are usually
incompatible with unification. Unification is however problematic in our model anyway due
to the Landau pole. At the scale ΛUV one would need to UV complete the model, which would
likely involve taking a dual of the color gauge group, resulting in a cascading gauge theory,
without a conventional perturbative unification (but rather unifying onto string theory in a
warped throat [13]).

As for the Higgs bound, it strongly depends on how the µ-term is generated. With the
operator given in Eq. (17) there is no additional Higgs quartic term generated, however,

10



one can easily imagine extensions of this model where the operator leading to the µ-term
will contain NMSSM-type additional sources for a quartic term thus relaxing the fine-tuning
from the Higgs mass constraint.

Summary

We have presented a calculable low-scale model of direct gauge mediation. The super-
symmetry breaking scale can be as low as 100 TeV, and there is no hierarchy between the
messenger masses and the SUSY breaking scale. The messengers play an integral part in
SUSY breaking: they are composites of the dynamics that breaks supersymmetry and in the
magnetic picture it is the structure of the interactions of the messengers that actually results
in SUSY breaking. These interactions are such that the SUSY breaking holomorphic mass
term for the messengers emerges naturally. In order to generate a real mass for the mes-
sengers one needs to shift the VEV of the meson M from the origin, which can be achieved
by adding additional interaction terms in the superpotential or by including an additional
U(1) gauge interaction. A µ-term can be generated from dynamics, and some of the sources
of the SUSY fine tuning problem can be eliminated. We expect that the phenomenology
of the model will be quite distinctive due to the presence of additional TeV scale particles
and modifications of the traditional GMSB spectrum. The main drawback for now is the
usual Landau-pole problem that is simply appearing to the the presence of the SU(5) adjoint
superfield M .

One of the most interesting features of the model is a rich phenomenology at the TeV
scale. Particles from the DSB sector may be directly observable at the LHC. In particular,
both the scalar and fermionic components of M can have TeV scale masses. Scalars in M
obtain mass due to the Coleman-Weinberg potential as well as gauge mediated contributions
at two-loops. While the Coleman-Weinberg potential is generated at one-loop, its contri-
bution to scalar masses scales as h4f 2 and is small in a large part of the parameter space.
Therefore we expect the scalar masses to be dominated by GMSB contributions. Fermionic
components of M obtain mass both from GMSB loops as well as one-loop contributions
arising from Mφφ̄ coupling. The latter coupling is of order one, so the new fermions will
roughly have masses comparable to the gluino mass. The new scalar and fermionic particles
at the TeV scale include SU(5) adjoints which transform as (8, 1)0, (1, 3)0, (3, 2)1/6, and
(3̄, 2)−1/6 under SU(3)c × SU(2)w × U(1).
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Note Added

While this manuscript was in preparation Refs. [14, 15] appeared, which also make use of
metastable vacua for gauge mediation. In Refs. [15] the messengers do not play an essential
role in the supersymmetry breaking dynamics. The main difference from Ref. [14] is that
there the R-symmetry is broken via a mass term NN̄ (in the notation of Eq.(8)) while here
this is achieved by generating a VEV for M . A preliminary version of this work has been
presented in [16].
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