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Abstract
We point out a set of operator identities that relate the operators corresponding to the oblique

corrections to operators that modify fermion couplings to the gauge bosons as well as operators that
modify triple gauge boson couplings. Such identities are simple consequences of the equations of

motion. Therefore the contributions from new physics to the oblique parameters can be disguised as
modifications of triple gauge boson couplings provided the fermion couplings to the gauge bosons
are suitably modified by higher dimensional operators. Since the experimental constraints on

triple gauge boson couplings are much weaker than the constraints on the oblique parameters this
observation allows extra room for model building. We derive operator relations in effective theories
of the Standard Model with the electroweak symmetry either linearly or nonlinearly realized and

discuss applications of our results.
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I. INTRODUCTION

The consequences of new heavy particles in extensions of the Standard Model (SM) can
be accounted for at low energies in terms of new effective operators. The wealth of data
collected by the LEP, SLD, and many other experiments severely constrains new operators
involving the electroweak sector. The most widely used operators for constraining new
models are those that modify the gauge boson two-point functions, which are often referred
to as the oblique [1, 2], or universal [3], corrections. Among several parameterizations of
the gauge boson two-point functions, the S, T , U parameters [2] are the best known. The
constraints on the S and T parameters are some of the most stringent among operators of
the same dimension [4]. Tight constraints on the oblique parameters pose challenges for
many extensions of the SM.

We want to point out that, since a shift in the couplings between fermions and gauge
bosons can be absorbed as oblique corrections, the observable effects of the oblique parame-
ters can be, to a large degree, removed if fermion couplings to gauge bosons are also modified
(related observations have been made in Refs. [5]). That is to say non-oblique corrections
can obscure the oblique corrections and new physics generating non-oblique corrections can
mask other effects that produce oblique corrections. We consider a complete set of higher-
dimensional operators added to the SM Lagrangian and we show that the lowest order
equations of motion imply relations between higher-dimensional operators corresponding to
the oblique operators, operators modifying the fermion couplings, and operators modifying
the triple gauge boson couplings. It seems to us that although this fact is known its use-
fulness is not widely appreciated. The triple gauge boson couplings were measured by the
LEP2 experiments, but the statistics are much more limited compared to the Z-pole data.
Therefore suitable modifications of couplings of fermions to the gauge bosons can render
the constraints on many models much milder than one would have anticipated if only the
oblique parameters were considered. To turn things around, this implies that improving
the electroweak constraints will certainly require a better knowledge of triple gauge boson
couplings. A task that will have to wait for the linear collider.

One might think that the electroweak precision measurements will become moot as we
enter the LHC era. This is not likely to happen even after the discovery of new particles.
At best, we will gain a partial knowledge about the spectrum of new particles at the LHC.
We will learn very little about the couplings of the newly discovered states. Electroweak
precision tests will continue guiding us towards the right theory.

In this paper we will discuss the operator relations in the frameworks of effective theories
of the SM both with linearly and nonlinearly realized electroweak symmetry. In the case
of linearly realized symmetry only S and T are relevant as they correspond to dimension
6 operators, while U corresponds to a dimension 8 operator. The equations of motion for
the SU(2) × U(1) gauge fields yield two independent relations involving S and T . In the
case of nonlinearly realized symmetry the same equations of motion yield three independent
relations involving S, T , and U . The main point of this article can be understood by glancing
at Eqs. (12) and (13) in the linear realization, and Eqs. (28)–(30) in the nonlinear realization.

In the next two sections we discuss in turn the linear and nonlinear cases. In Sec. IV we
give a toy example and discuss applications to extra dimensional scenarios. We summarize
the lowest dimensional chiral Lagrangian for the electroweak theory in Appendix A.
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II. LINEAR CASE

We now turn to an effective theory containing the SM fields with one Higgs doublet.
The most important higher-dimensional operators have dimension 6. A Majorana mass
term for the left-handed neutrinos has dimension 5, but we are only interested in flavor-
preserving operators since the oblique parameters are flavor universal. It is straightforward
to enumerate all operators of dimension 6, see Ref. [6]. Integration by parts and equations
of motion are used extensively to avoid redundancy among operators. What we now show
is that using the equations of motion, we relate particular linear combinations involving the
oblique parameters and other operators to peculiar redundant operators that only affect the
triple gauge boson couplings.

We will use the notation of Ref. [6]. We will need only a small subset of operators in
Ref. [6]

OWB = (h†σah)W a
µνB

µν , Oh = |h†Dµh|
2, (1)

Os
hl = i(h†Dµh)(lγµl) + h.c., Ot

hl = i(h†σaDµh)(lγµσ
al) + h.c., (2)

Os
hq = i(h†Dµh)(qγµq) + h.c., Ot

hq = i(h†σaDµh)(qγµσ
aq) + h.c., (3)

Ohu = i(h†Dµh)(uγµu) + h.c., Ohd = i(h†Dµh)(dγµd) + h.c., (4)

Ohe = i(h†Dµh)(eγµe) + h.c. . (5)

where W a
µν is the SU(2) field strength, Bµν the hypercharge field strength and h represents

the Higgs doublet. The left-handed fermions are denoted q and l, while the right-handed
ones u, d, and e. The family indices are implicitly summed over all three families. OWB

corresponds to the S parameter and Oh to T . The remaining operators on our list alter
fermion couplings to the B and W gauge bosons.

The lowest-order Lagrangian is

L = Lgauge−fermion + (Dµh)†(Dµh) − V (h) (6)

and the corresponding equations of motion for the gauge bosons are

∂µBµν + i
g′

2
(h†Dνh − Dνh

†h) + g′
∑

f

Yffγνf = 0, (7)

DµW a
µν + i

g

2
(h†σaDνh − Dνh

†σah) +
g

2

∑

f

fLγνσ
afL = 0, (8)

where Yf is the hypercharge of fermion f .
Multiplying Eq. (7) by (ih†Dνh + h.c.) and Eq. (8) by (ih†σaDνh + h.c.) we obtain

2g′Oh −
g

2
OWB + g′OY

hf = 2iBµνD
µh†Dνh − g′h†h Dµh†Dµh

+
g′

2
h†h(Bµν)

2 −
g′

2
h†h

(

h†D2h + (D2h†)h
)

, (9)

−g′OWB + g(Ot
hl + Ot

hq) = 4iW a
µνD

µh†σaDνh − 6gh†h Dµh†Dµh

+gh†h(W a
µν)

2 − gh†h
(

h†D2h + (D2h†)h
)

, (10)

where OY
hf =

∑

f YfOs
hf = 1

6
Os

hq −
1
2
Os

hl +
2
3
Ohu −

1
3
Ohd −Ohe. Note that of the four terms on

the right-hand sides of Eqs. (9) and (10) the first terms are observable as they modify gauge
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boson self couplings, while the second and third terms are not currently observable and the
fourth term gives a contribution proportional to the fermion masses that we neglect. The
second and third and part of the fourth terms renormalize the lowest-order Lagrangian in
Eq. (6) when h†h is substituted by its vacuum expectation value, v.

To make the operator relations more transparent let us redefine the normalization of
operators OWB and Oh as follows

OS =
α

4scv2
OWB, OT = −

2α

v2
Oh, (11)

where s and c are the sine and cosine of the weak mixing angle, α is the fine structure
constant, and v ≈ 250 GeV. The rescaled operators OS and OT are defined such that their
coefficients are, respectively, the S and T parameters. That is the Lagrangian including the
operators L = aSOS + aT OT gives a contribution to S and T equal to S = aS and T = aT .
Neglecting the unobservable terms in Eqs. (9) and (10) we get

−
2gscv2

α
OS −

g′v2

α
OT + g′OY

hf = 2iBµνD
µh†Dνh, (12)

−
4g′scv2

α
OS + g(Ot

hl + Ot
hq) = 4iW a

µνD
µh†σaDνh. (13)

The relations (12)–(13) can be understood as an equivalence between oblique corrections
and shifts in the fermion couplings to gauge bosons up to modification of gauge boson self
couplings. It is straightforward to convert the operators on the right-hand sides to the well-
known parameterization of general triple gauge boson couplings in Ref. [7] and ensuing to
contributions to the e+e− → W+W− scattering cross sections.

Alternatively, the same operator relations can be obtained by field redefinitions [8]. Let
us consider the Lagrangian:

L = −1
4
W a

µνW
a µν − 1

4
BµνB

µν + Dµh†Dµh +
∑

f

if̄D/f +
g′ε1
Λ2

OY
hf +

gε2
2Λ2

(Ot
hl + Ot

hq). (14)

Using the field redefinitions

B̂µ = Bµ +
ε1
Λ2

i(h†Dµh − Dµh
†h), (15)

Ŵ a
µ = W a

µ +
ε2
Λ2

i(h†σaDµh − Dµh†σah), (16)

the Lagrangian now reads

L = −1

4
Ŵ a

µνŴ
a µν − 1

4
B̂µνB̂

µν + D̂µh
†D̂h +

∑

f

if̄ D̂/f −
2g′ε1
Λ2

Oh +
gε1 + g′ε2

Λ2
OWB

+ . . . (17)

where the hatted quantities denote field strengths and covariant derivaties associated to the
Ŵ a

µ and B̂µ gauge fields and the . . . stands for the unobservable terms as well as for the
operators modifying the triple gauge boson self couplings appearing on the right hand side
of Eqs. (9)–(10).

Let us comment on the result of Ref. [4] where bounds on arbitrary linear combinations of
the operators in Eqs. (1)–(5) were obtained. It is easy to check that the linear combinations
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of operators on the left-hand sides of Eqs. (12) and (13) are relatively weakly constrained.
Suppose these linear combinations of operators are added to the SM Lagrangian one at a
time with a coefficient 1

Λ2 . The 90% confidence level bounds are Λ > 650 GeV for the
coefficient multiplying the operators in Eq. (12), and Λ > 1.2 TeV for the ones in Eq. (13).
The only source of these bounds is the data on the e+e− → W+W− cross section. If the
data on the e+e− → W+W− scattering was not used in Ref. [4] these linear combinations
of operators would not be bounded at all.

The analysis of gauge boson self energies was recently extended in Ref. [3] to include
higher-derivative terms. The relevant higher-derivative terms are governed by the operators
OBB = 1

2
∂αBβγ∂αBβγ and OWW = 1

2
DαW a

βγD
αW aβγ . These operators are not listed as

independent operators in Ref [6] because, using Bianchi identities like ∂αBµν + ∂µBνα +
∂νBαµ = 0, they are equal to (∂µBµν)2 and (DµW a

µν)
2, respectively, so they can be expressed

as the squares of Eqs. (7) and (8), see also Ref. [9]. Therefore, OBB and OWW are equivalent
to linear combinations of the operators in Eqs. (1)–(5) as well as four-fermi operators. We
are not aware of any further identities that would relate OBB or OWW to triple gauge boson
couplings in analogy with the S and T parameters.

III. NONLINEAR CASE

The scalar sector of the SM without the physical Higgs boson is conveniently described
by a Σ field

Σ = exp
(

iπaσa

v

)

, (18)

where σa are the Pauli matrices. Σ transforms linearly under the SU(2)L ×SU(2)R as Σ→
LΣR†. The hypercharge is embedded in SU(2)R, so that DµΣ = ∂µΣ− igWµΣ+ i

2
g′BµΣσ3,

where Wµ = W a
µ
σa

2
. The higher dimensional operators of interest to us fall into two classes.

First, operators containing the gauge bosons and the Σ fields [1, 10, 11, 12]. These include
the operators corresponding to the oblique parameters as well as operators that modify
higher-point gauge couplings. Second, operators containing two fermions, gauge fields, and
the Σ field [13, 14]. These operators modify the couplings of fermions to the gauge fields.
Appendix A contains a list of all such operators. To distinguish from the linear case operators
are denoted as L instead of O.

It is more transparent to trade the Σ field for the following combinations

Vµ ≡ (DµΣ)Σ†, T ≡ Σσ3Σ†, (19)

V̂µ ≡ (DµΣ
†)Σ, T̂ ≡ σ3. (20)

In terms of these objects, the lowest-order Lagrangian is

L = Lgauge−fermion −
v2

4
Tr(V µVµ). (21)

In addition to Tr(V µVµ) there exists another operator of dimension 2, denoted L0 in ap-
pendix A, but since L0 violates the custodial symmetry it is assumed that its coefficient is
small. The corresponding equations of motion for Bν and W a

ν are

∂µBµν − i
v2g′

4
Tr(VνT ) + g′

∑

f

Yffγνf = 0, (22)

5



DµW a
µν + i

v2g

4
Tr(Vνσ

a) +
g

2

∑

f

fLγνσ
afL = 0. (23)

We multiply Eq. (22) by ig′Tr(TV ν) and Eq. (23) by igTr(V νσa) as well as by
igTr(TV νTσa). After a bit of algebra we obtain

g′2L0 − L1 + g′2LY
f = −L2 −

g′2

2
BµνBµν , (24)

L1 + g2(L1
q + L1

l ) = L3 + g2Tr(W µνWµν) +
g2v2

2
Tr(V µVµ), (25)

−2g2L0 + L1 − 4L8 + g2(L3
q + L3

l ) = L3 − 4L9 −
g2v2

2
Tr(V µVµ), (26)

where LY
f = 1

6
(L2

q − L5
q) −

1

2
(L2

l − L5
l ) − (L4

q + L6
q + L4

l + L6
l ) is the product of the fermion

hypercharge current and iTr(TV ν). The operators on the right-hand sides of Eqs. (24)–(26)
that are not abbreviated as Li are terms in the Lagrangian in Eq. (21) and therefore are not
observable. Eqs. (24)–(26) also imply that the operators L2,3,9 are redundant, an observation
already made in Ref. [15]. What is important for us is that L2,3,9 alter only the gauge boson
self couplings.

In analogy with the linear case discussed in the previous section, we define LS to be the
operator whose coefficient is the S parameter, and so on for T and U .

LS = −
1

16π
L1, LT =

α

2
L0, LU = −

1

16π
L8. (27)

Neglecting the unobservable terms in Eqs. (24)–(26) we get

16πLS +
8π

c2
LT + g′2LY

f = −L2, (28)

−16πLS + g2(L1
q + L1

l ) = L3, (29)

−16πLS −
16π

s2
LT + 64πLU + g2(L3

q + L3
l ) = L3 − 4L9. (30)

As in the linear case, these relations can be obtained by field redefinitions. Indeed, the
Lagrangian:

L = −1

4
W a

µνW
a µν − 1

4
BµνB

µν −
v2

4
Tr(V µVµ) +

∑

f

if̄D/f

+g′2ε1L
Y
f + g2ε2(L

1
q + L1

l ) + g2ε3(L
3
q + L3

l ), (31)

can be brought back to its more canonical from

L = −1
4
Ŵ a

µνŴ
a µν − 1

4
B̂µνB̂

µν −
v2

4
Tr(V̂ µV̂µ) +

∑

f

if̄ D̂/f

+(−g′2ε1 + 2g2ε3)L0 + (ε1 − ε2 − ε3)L1 + 4ε3L8 + . . . (32)

by the field redefinitions:

B̂µ = Bµ + ε1ig
′Tr(TVµ), (33)

Ŵ a
µ = W a

µ + ε2igTr(Vµσ
a) + ε3igTr(TVµTσa). (34)
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IV. APPLICATIONS

We want to illustrate how one might use our results in a toy example, and comment how
some of the results have already been incorporated into models with extra dimensions.

Let us start with a toy example. An electroweak triplet scalar breaks the custodial
symmetry and therefore generates a contribution to the T parameter. Hence one expects
stringent constraints on the couplings and mass of such a field. Suppose we introduce a
complex triplet scalar with the hypercharge −1 that couples to the Higgs doublet as follows

V = M2
φφ

a∗φa + µ
(

φah̃†σah + φa∗h†σah̃
)

, (35)

where h̃ = iσ2h∗. Assuming that Mφ is large we integrate φ out and keep the interesting
part of the effective action

Lφ =
4µ2

M4
φ

Oh, (36)

which corresponds to a negative correction to the T parameter. If φ were the only source of
new physics, we would then get a 90% confidence level limit

µ2

M4
φ

<
1

(14 TeV)2
. (37)

If we want to relax this bound, we could add new particles that would give a positive
contribution to T to compensate. One could, for instance introduce a hypercharge 0 weak
triplet. Alternatively, we can use the results presented in Section II and look for new physics
that will modify the fermion-gauge boson coupling in order not to cancel the coefficient of the
Oh operator but in order to generate a particular linear combination of higher dimensional
operators that is poorly constrained.

Combining Eqs. (9) and (10) gives a relation that only involves the operator Oh and does
not involve OWB

2g′2Oh + g′2OY
hf −

g2

2
(Ot

hl + Ot
hq) = O3V , (38)

where O3V indicates a linear combination of operators on the right-hand sides of Eqs. (9)
and (10) that modify gauge boson self couplings. This particular linear combination of
operators is much less constrained by the precision electroweak data than the coefficient of
Oh. Let us make a comparison with the bound in Eq. (37). Suppose the SM Lagrangian is
amended by the linear combination of operators in Eq. (38) with a coefficient 1

Λ2 . Then the
90% confidence level bound is only Λ > 600 GeV, which we obtained using Ref. [4]. Clearly,
we can accommodate a much larger contribution from the triplet scalar provided that we
generate the appropriate combination of operators.

Our goal in this toy example is obtaining the linear combination of operators in Eq. (38)
by including additional heavy states that induce the operators OY

hf , Ot
hl, and Ot

hq. The
obvious choices are heavy gauge bosons of additional spontaneously broken SU(2) × U(1)
symmetry. We will refer to such gauge bosons as B′ and W ′. Suppose that these bosons
couple to the Higgs current and the fermion currents as follows:

L = qhB
′
µ jµ

h + qf

∑

f

YfB
′
µ jµ

f + qW W ′a
µ jaµ

h + qW W ′a
µ

∑

fL

jaµ
f , (39)
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where jµ
h = i(h†Dµh−Dµh†h), jaµ

h = i(h†σaDµh−Dµh†σah), and jµ
f are the obvious fermion

currents. We denoted the coupling constants and charges as qh,f,W and assumed that the
couplings of fermions to the B′ are proportional to the fermion hypercharge. Integrating
out the heavy vector boson yields

LB′W ′ = −
2q2

h

M2
B′

Oh −
qhqf

M2
B′

OY
hf −

q2
W

M2
W ′

(Ot
hl + Ot

hq) + O4−f , (40)

where O4−f are four-fermion operators induced by the B′ and W ′ that we do not need to
specify in detail.

It is clear that by choosing the couplings qh,f,W appropriately the sum of Lφ and LB′W ′

can be made proportional to the combination of operators on the left-hand side of Eq. (38).
This would result in a theory with apparent custodial symmetry breaking that is nevertheless
relatively poorly constrained. The only observable consequence of the custodial symmetry
breaking would be through the presence of the operator O3V on the right-hand side of
Eq. (38). This is a toy example because of two obvious caveats. First, we had to fine-tune
the couplings to obtain the desired linear combination of different operators. To make it
useful one would hope for a dynamical reason for the couplings and masses of heavy fields
to have suitable values. Second, the exchanges of the B′ and W ′ also induce four-fermi
operators. Such operators are usually tightly constrained as well [4]. Of course, our toy
example is reminiscent of the littlest Higgs model [16], where the heavy fields are analogous
to the ones in our toy example. The details of the effective operators induced in that case
and bounds on the parameters are presented in Ref. [17].

One may expect that it is possible to move beyond toy models in the context of extra
dimensions with fermions and gauge fields living in the bulk. In that case, depending on
the bulk and boundary couplings as well as the background geometry, one can manipulate
the wave functions of different fields to minimize the constraints on such models. Indeed a
subset of our results was used in the literature, for example in Refs. [18, 19, 20].

In Refs. [18, 19] models with the linearly realized electroweak symmetry are considered. A
field redefinition is used to shift the oblique parameters in presence of additional operators.
The particular field redefinition used there is equivalent to a linear combination of Eqs. (15)
and (16) where these equations are added together with their relative weights proportional
to the coupling constants g′ and g, respectively.

In the case of Higgsless models where electroweak symmetry is nonlinearly realized it was
shown in Ref. [20] how to reduce the oblique parameters by an equivalent linear combination
that can be obtained from our Eqs. (28) to (30). It was also pointed out in Ref. [21] that
reducing the oblique parameters leaves an imprint on triple gauge boson couplings, which
is in complete agreement with our results. It is worth remembering, however, that there is
more than one operator relation that can be used to lessen the effect of oblique parameters
and exploiting that fact could lead to construction of more successful models.

V. CONCLUSIONS

We have explored operator relations derived from equations of motions in effective theories
of physics beyond the Standard Model. The resulting operator identities relate the oblique
parameters and operators that change gauge boson-fermion couplings to operators that
modify gauge boson self couplings. When electroweak symmetry is linearly realized there
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are two such relations involving the oblique parameters S and T . In case of nonlinearly
realized symmetry, there are three relations that involve S, T , and U .

These particular combinations of operators can only be observed by measuring the triple
gauge boson couplings. If one constructed an extension of the SM in which only these special
combination of operators are present, there would be no other way to distinguish this model
from the SM by making precision measurements. This presents an interesting opportunity
and challenge for model building. It also means that a better measurement of the gauge
boson self couplings could be very useful for constraining new physics.

To date, some of the operator relations have been used to reduce electroweak constraints
on extra dimensional models. One accomplishes that by choosing profiles of fields to alter
the couplings of the SM fields to Kaluza-Klein excitations. Not all operators relations we
pointed out seem to have been explored in model building thus far. It would be intriguing
if one could find theories with dynamics such that only the special linear combinations of
operators appear at low energies.
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APPENDIX A: ELECTROWEAK CHIRAL LAGRANGIAN

For completeness, we list here CP-conserving operators in the electroweak chiral La-
grangian to the lowest interesting order. These include dimension 2 and 4 operators con-
taining the Σ field and the gauge field strengths, as well as dimension 4 operators containing
two fermions and the Σ field [11, 12, 13, 14]. We briefly explain how to obtain these results.

It is useful to express the operators in terms of Vµ ≡ (DµΣ)Σ† and T ≡ Σσ3Σ† instead
of the Σ field itself. We will also use V̂µ ≡ (DµΣ†)Σ and T̂ ≡ σ3 when we discuss operators
containing fermions. Under the SU(2)L × SU(2)R these combinations transform as follows

(Vµ, T ) −→ L(Vµ, T )L† and (V̂µ, T̂ ) −→ R(V̂µ, T̂ )R†.

Since Σ is unitary (DµΣ)Σ† + Σ(DµΣ†) = 0. Therefore, V †
µ = −Vµ and T † = T . The same

holds for V̂µ and T̂ . Because det(Σ) = 1 we have Tr(Vµ) = Tr(V̂µ) = 0. T and T̂ are traceless
as well.

Gauge invariant operators containing only the Σ field and the gauge fields can be written
as traces of Vµ, T , Bµν , and Wµν = W a

µν
σa

2
. One could also construct invariants by taking

determinants instead, but doing so does not lead to any independent operators [11]. There
is no need to use V̂µ and T̂ since traces are cyclic and Σ is unitary. Also, there is no
need to include covariant derivatives because derivatives acting on Bµν and Wµν can be

9



removed by integration by parts. Moreover, DµT = [Vµ, T ] and DµVν − DνVµ = −igWµν +
i
2
g′BµνT + [Vµ, Vν ]. Our sign convention for the covariant derivative is such that DµΣ =

∂µΣ− igWµΣ+ i
2
g′BµΣσ3. In addition, ∂µTr(VνT ) ≈ 0 and DµVµ ≈ 0 by taking derivatives

of the equations of motion in Eq. (22) and (23). The approximate sign indicates that we
neglect terms proportional to fermion masses. Since Wµν , Vµ ,and T are traceless two-by-two
matrices therefore an arbitrary trace of these matrices can be written as a product of traces
of pairs of matrices if the number of matrices in such a trace is even or as a product of one
trace of three matrices and several traces of pairs of matrices otherwise.

Using the observations outlined above it is straightforward to enumerate operators of
dimension 2:

Lkin = −
v2

4
Tr(VµV

µ), (A1)

L0 =
v2

4
Tr(VµT )Tr(V µT ), (A2)

and dimension 4

L1 =
1

2
gg′BµνTr(WµνT ), (A3)

L2 =
i

2
g′BµνTr([Vµ, Vν ]T ), (A4)

L3 = igTr(W µν [Vµ, Vν ]), (A5)

L4 = [Tr(VµVν)]
2 , (A6)

L5 = [Tr(V µVµ)]
2 , (A7)

L6 = Tr(V µV ν)Tr(VµT )Tr(VνT ), (A8)

L7 = Tr(V µVµ)Tr(V νT )Tr(VνT ), (A9)

L8 =
1

4
g2 [Tr(WµνT )]2 , (A10)

L9 =
i

2
gTr(W µνT )Tr([Vµ, Vν ]T ), (A11)

L10 =
1

2
[Tr(V µT )Tr(VµT )]2 , (A12)

L11 = gεµνρσTr(VµT )Tr(VνWρσ). (A13)

We followed the notation of Ref. [12]. Note that iTr(W µν [Vµ, T ])Tr(VνT ) can be expressed
as a combination of L3 and L9. All operators in the equations above are Hermitian and even
under CP. Under CP, the fields of interest to us have the following transformation properties

(CP ) Bµν (CP )−1 = −(−1)µ+νBµν (CP ) Wµν (CP )−1 = (−1)µ+νσ2Wµνσ
2 (A14)

(CP ) Vµ (CP )−1 = (−1)µσ2Vµσ
2 (CP ) T (CP )−1 = −σ2Tσ2, (A15)

where the last line follows from (CP ) πaσa (CP )−1 = σ2(πaσa)σ2. Meanwhile, (−1)µ equals
1 for µ in the time direction and −1 for µ in the space directions. Therefore, terms without
the εαβγδ tensor are even under CP when the combined number of Bµν and T fields is even.
Terms with the εαβγδ tensor must have an odd number of Bµν and T fields to be CP even.

We now turn to operators of dimension 4 containing two fermions [13, 14]. These are all
products of fermion currents with one Vµ, or V̂µ, and several T ’s, or T̂ ’s, sandwiched between
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the fermions. There are six such operators

L1
f = ifLγ

µVµfL, (A16)

L2
f = ifLγ

µ(VµT + TVµ)fL, (A17)

L3
f = ifLγ

µTVµTfL, (A18)

L4
f = ifRγ

µV̂µfR, (A19)

L5
f = ifRγ

µ(V̂µT̂ + T̂ V̂µ)fR, (A20)

L6
f = ifRγ

µT̂ V̂µT̂ fR. (A21)

The subscript f can be either q or l for operators L1,2,3. With a slight abuse of notation, we
are going to use the same subscript for L4,5,6 to denote the doublets of right-handed quarks
or leptons.

Operators of the form fermion current times a trace of the bosonic matrices are not
independent. If the current and the trace contain a sum over σa such operator can be
reduced to L1...6

f using the completeness relation for the Pauli matrices. Without the Pauli
matrices there is only one non-vanishing trace that is Tr(VµT ). Because Vµ and T are
traceless VµT + TVµ is proportional to the identity matrix, so its trace is trivial. The
operators with fermions, L1...6

f , are CP even. The standard CP transformation property of
fermion currents, (CP ) jµ

L,R (CP )−1 = −(−1)µjµ
L,R, involves transposing the fermion fields.

Transposing the right-hand sides of Eq. (A15) yields extra minus signs: (σ2Vµσ2)T = −Vµ

and (σ2Tσ2)T = −T . The CP transformation properties of V̂µ and T̂ are identical to those
of Vµ and T .
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