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1. Introduction

In recent years, particle physicists have become increasingly interested in
the use of cosmological calculations as tests for their hypotheses about
elementary particles. Not only did particles in the early Universe have
energies that far exceed the limits of present day accelerators, but also,
densities at these times were so large that even weakly interacting particles
like neutrinos possessed mean free paths shorter than 3 x 108 m. Under these
conditions, particles that interact with normal matter only weakly or
gravitationally can produce significant effects, whose repercusions could
still be measurable at the present time.

Constraints from Cosmology can usually be obtained by asking the
question: could a Universe containing a certain type of particle evolve into
the Universe that we presently observe? In this paper we will find
mass--lifetime constraints on particles whose strongest interaction is the
weak interaction, and mass--coupling constant constraints on particles that
interact with normal matter only gravitationally, by requiring that their
present energy density not exceed the critical energy density, and that density

perturbations in the early Universe be allowed to grow into galaxies.



2. Stable Weakly Interacting Massive Particles

At the present time, observable galaxies appear to be engaged in a rapid
expansion; so it would seem that in the past the matter of the Universe was
more densely packed than it is now. For the galactic matter to have escaped
the gravitational potential well of this denser era, it must have been much
more energetic. If we continue to trace this behaviour back further and
further in time, we come to more densely packed epochs, with even more
energetic particles; and eventually we come to a singularity’ where all
particles are ultra-relativistic. This is the essence of Big Bang Cosmology.

The point that will prove to be central to our discussion of stable?
weakly interacting massive particles (WIMPs?®) is that these particles were
once moving ultra-relativistically, and were so densely packed that reactions
occurred very quickly, and hence, at very early times all particles comprised a
relativistic gas in thermal equilibrium. This runs counter to the usual cases in
thermodynamics where thermal equilibriums are established after some period
of time; but in the case of Cosmology, the Universe rapidly goes into a thermal
equilibrium which is eventually destroyed. This being the case, we can treat
different particles in the early Universe in a manner somewhat analogous to,
gay, the different modes of vibration and rotation of atoms, or to different
radation modes inside a reflecting cavity.

To begin a discussion of particles in the early Universe, it is helpful to
recall some results from Cosmology which are derived using the
Robertson-Walker metric®. Most importantly, distances between fundamental

points (i.e. points following the expansion of space-time) grow in time



proportionally to a scale factor R(t). Since, by the de Broglie relation,
momenta are inversely proportional to wavelengths, they decrease with time.
More concretely, if a particle has a momentum py at time t,, at any subsequent
time t, the particles momentum is
p(t) = p; R(ty/R(L) . (2.1)
For ultra-relativistic particles, this decrease in energy is often referred to as
"red-shifting away." From this relation it is obvious that the energy of a
relativistic gas, and hence its temperature, will decrease as the Universe
expands. More precisely, since kT , where k is Boltzmann’s constant and T is
the temperature, is a measure of the average energy of a particle in thermal
equilibrium, the temperature of an ultra-relativistic gas is given by
T(t) = constant/R{t) . (2.2)

We are now in a position to ask what happens to neutral massive spin 1/,
particles as the universe expands, and the relativistic gas it contains cools.
When the temperatureSis much larger than the mass, my of a particle X, the
two competing processes of creation and annihilation are held in balance: X
particles annihilate with anti-X particles, but other particles in the gas have
sufficient energy to create more X's when they annihilate or decay®. For any
reaction that destroys X’s, there is a reversed reaction that creates X’s, and
these two types of reactions occur, on average, equally often. During this
period the number of X particles per comoving volume?® is constant, however,
as the temperature falls below my, particles which have sufficient energy to
produce X’s become increasingly rare, in accordance with the Boltzmann factor
exp(-my/kT).  Thus, although X's continue to annihilate, their rate of
production decreases rapidly with decreasing temperature, and so the number

of X particles per comoving volume declines. The annihilation of X particles



does not continue unabated though, since the annihilation rate is proportional
to the X number density, n, times the anti-X number density, which is
assumed? to be equal to n, so as n decreases, the annihilation rate decreases
like n2. For this reason, the decrease in n due to annihilation eventually
becomes insignificant in comparison to the decrease in n due to the general
gxpansion of the Universe. Qualitatively, it becomes harder and harder for the
X’s to find anti-X’s to annihilate with, and so they eventually behave as if no
annihilation is allowed. Mathematically the rate of change of n was expressed
by Lee and Weinberg [3] as
dn/dt = — 3(RI/ARMI ) — <ov>n2(t) + <ov>ngg(t), (2.3)
where <ov> is the thermal average of the X anti-X annihilation cross section
times the relative velocity, and Neq is the number density of X particles in
thermal equilibrium; thaUs
gl = 2 f(zn:ﬁL amip?dp (exp(( p2 + mAVZ/AT) + )7 (2.4)
where the factor 2 comes from assuming X has two spin states (and h=c= 1,
as throughout).
It can be shown that in a Universe with a flat® Robertson-Walker metric
the Hubble parameter is
H= RBMR = (BmnpG/3)2 | (2.5)
where G is the gravitational constant, and p is the energy density of the

relativistic gas®:

p = Npa T4 = Ne(m2/15) (kT4 . (2.6)
N¢ here is the effective number of degrees of freedom,
Nf = lfz ( Np + ?fa ng ) (2.7)

where ny and ng are the total number of internal degrees of freedom'® for all

bosons and fermions present in equilibrium in the gas.



When the temperature is below my, the velocities of the X particles are
non-relativistic; for Dirac particles this means that the annihilation cross
section in the center of mass frame is proportional to 1/v, therefore <gv> is
velocity, and hence temperature independent’. If X interacts only weakly, and
m,, << M., the Z boson mass, we can write <ov> as

<gv> = (Gp2/2mimy? Ny (2.8)
where Ny is a dimensionless factor which takes into account the various
channels the annihilation can proceed into'. Unfortunately eq. (2.8) is not
valid for large my; this can be rectified by noting the correspondence evident
in the GSW electroweak theory':

Gp/+2 --> g2/(B((dmy? - M;2 )2 + M,2T,2) cos? 8y, ) , (2.9)

and g = gsinBy : (2.10)
S0,

<ov> = et my2 Ny /(BAm({dmy? - M,2 )2 + M, 2T 2)cos?eysinidy,) , (2.11)
where 8,, is the Weinberg angle, and ', is the resonance width of the Z boson.
We are making the approximation here that all the X particles have the same
energy, my; if we took into account the distribution of energies, the peak in
the cross section at my = M, would be lowered and spread out.

We are now ready to attempt a calculation of the number density of X
particles that survive to the present time. Eq. (2.3) can be simplified by
making the substitution

n=fT3 , ngg = fgq T° : (2.12)

Using eq. (2.2), this removes the explicit cosmic expansion dependence

from the equation, giving
df /dt = <ov>(45/83NK4G)/2 (2 - fg?) . (2.13)

Rewriting the temperature as



x = kT/my (2.14)
yields df/dx = b(f? - fgg?) (2.15)
where b = <ov>(my/k3) (45/813NG)2 . (2.16)

The boundary condition for eq. (2.15) is that as x --> oo, f(x) approaches
feqtx), which, from eq. (2.4), is given by
feqlx) = k¥/(2m?) J du u? {exp (Uz + x 3172 + 1)71) . (2.17)
It is expected the number of particles per comoving®® volume, which is
proportional to f, remains approximately equal to the number of particles per
comoving volume in equilibrium, feq' until the chemical equilibrium is
destroyed at the freezing temperature. The number density of X particles in
equilibrium is determined by the temperature, and decreases rapidly as T falls
below my, but the total number density of X particles can only be reduced by
expansion and annihilation({which decreases rapidly with n). The freeze-out,
occurs when the rate of change of n due to the cosmic expansion, -3H n,
becomes much larger than the rate of change of n due to annihilation, <ov= n2.
This condition is roughly equivalent to requiring that the mean free time of
the X particles becomes greater than the characteristic expansion time. In
terms of our new variables, Lee and Weinberg [3] defined the freezing
temperature, T¢, by
dfgg/dx = bfgg® , at xp = kTg/my . (2.18)
Below the freezing temperature, f becomes much larger than feq- (see fig.
1) so eq. (2.15) can be approximated by
df/dx = bf2 , % < % ; (2.19)
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Fig. 1. Sketch of behaviour of f=nT? and fgq = ngq T%. See ref. (3],

If the approximation is made that particles are non-relativistic for

temperatures below their mass, then eq. (2.17) can be simplified:

feqlx) & Kk3/m? J du u? (exp (xu?/2 + 1/x) + 1)7 (2.20a)
x  k3/112 exp(- Wx)J’ du u? exp(-xu2/2) , T« my (2.20b)
x  2k3 exp(-1 fx)f(?ﬂx)yz (2.20c)
Thus eq. (2.18) becomes
exp (1/x¢) (x¢™12 - 3x¢/2/2) = 2bk3/(2n)3/2 (2.21)
which can be solved numerically to determine xs. When & « 2/3 we hlave
f(xg) = fgq(xf) % 1/A4bxe?) . (2.22)

Now, solving eq. (2.19) yields
fte = T/Mbat + bilxy - %) . (2.23)
For my » 2 x 107% eV, the present value of x is approximately zero, so the
present value of f is
f(0) = 1/b{xe? + x¢) ' (2.24)
We can now trace the value of n as the temperature drops, but only for
masses above about 3 MeV: for my < 3 MeV a simplification occurs. As the

temperature drops in this energy region, the cross sections for all types of



weak interactions are dropping. At the same time, the number densities for all
types of particles are decreasing. The result of these two processes is that
WIMPs eventually stop interacting with all types of particles, including
themselves. This transition to a Universe which is transparent to weak
interactions is known as the neutrino decoupling. For my < Tgec, the
decoupling temperature, the X’s decouple while they are still relativistic, and
hence the number of X particles per comoving®® volume for T < Tgee is equal
to the number of X particles per comoving volume at T = Tgec.

Following Weinberg [2] roughly, we can calculate the decoupling
temperature by first noting that all velocities will be of order unity, and by
replacing my in eq. (2.8) with the average energy of particles in equilibrium,
KT. Setting Ny = 1, we have

<gv> = (Gp?/2m) (KT)? . (2.25)

We will also need the number density of weakly interacting fermions; a
rough result for the number density could be obtained by dividing eq. (2.6) by
kT, but the exact result is'

n= Mp283) KT /2 ‘ (2.26)
where Mp = (/) (np + (74) ng) (2.27)
is an effective number of degrees of freedom.

At the temperature range of interest, the only charged particles present in
substantial numbers are electrons and positrons; there may or may not be
several types of neutrinos present, depending on their masses, but there will
at least be vg’s and anti vg's, and probably vy ’s and anti v),’s, present. Thus,
including the X’s, we find", from eq.s (2.26) and (2.27), that the number
density of ultra-relativistic weakly interacting particles is, approximately

ny ® (12/12) 8(3) (kT)® ‘ (2.28)
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The rate at which a single X particle is scattered'®, and the rate of X

production per lepton are then both approximately equal to

<gv> Ny & (6/13) L3) Gp? (KT)® : (2.29)
From eq.s (2.5) and (2.6), the Hubble parameter is given by
H = (8 m3 Ny G/15)172 (kT)? . (2.30)

The interaction of X particles ends around the temperature when H
becomes greater than <ov> ny,. Thus we examine the ratio
<gv> ny/ H = (3/11%) (15/21iNg)V/ 2 (GE2/G1/2) (kT)3 (2.31a)
x (T/3x10'0K)3 ' (2.31b)
which means that the X decoupling occurs around'™ Tgee & 3x100 K & 3 MeV.

Dividing eq. (2.26) by T3, we obtain the value of f for X particles which
decouple when relativistic:

f = (3/202) 53 k® , my < Tgge - (2.32)
This value for f will stay constant until the present time, since the X particles
cease to interact when the temperature falls below Tgec.

Now that we have equations for f(0) for all possible values of my, it
would seem that we could write down the present energy density of the X
particles, however, there is one more significant event to take into account
which happens between the neutrino decoupling and the present: the electron
-positron annihilation. This annihilation occurs as the temperature drops
below the mass of the electron mg = .511 MeV; the energy from these particles
goes into heating the photon gas, and only a negligible amount goes into
producing neutinos and WIMPs. For this reason, after the e*e” annihilation a
distinction must be made between the temperature of the photons, Ty, and the
temperature of any relativistic neutrinos and WIMPs, T,,. Whether or not there

are such particles does not matter here; we are using the temperature T,, to
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take account of the the expansion of the Universe via eq. (2.2).

It can be shown from entropy considerations' that the e*e” annihilation
increases the value of R Ty by a factor of (/)'/3, so (T,,/Ty)? is decreased
by a factor'® of 4/y. It is interesting to note that the events that have just
been described, from the Big Bang to the e*e” annihilation, all occur within a
span of a few seconds!?.

We can now write down the present energy density of WIMPs, using the
present temperature of the remnants of the original ultra-relativistic gas,
that is the temperature of the microwave background radiation, which has been
measured?? to be Tygg = 2.7 K = 2.3 x 1074 eV. So, the present energy density
of X and anti-X particles is

p = 2myng = 2my (4/)) Tye® 1(0) . (2.33)

A plot showing p vs. my is given in fig. 2. The general behaviour of this
graph can be explained quite easily. For my < Tgeq, f(0) is constant, s0 p
My. For Tgee < My We note that x; ranges between O and 2/3, so that f(0)
essentially varies like 1/b. When?! Ty < my < My, b is proportional to my?,
$0 p x My "2, and for M, < my, b is proportional to my™, so p & my?.

If we require that the present energy density of X’s is less than the
present critical density?? (pc, & 1x10729 g/cm?), then we find that there are
two mass ranges of stable Dirac WIMPs allowed: my < 28 eV, and 2.2 GeV < my
< 920 GeV.

Fig. 2 also demonstrates a general feature of particles annihilating in the
early universe; for particles to annihilate fast enough to produce a
sufficiently small energy density, the annihilation rate must be large. For
masses above Tge. the final energy density varies roughly as one over the

cross section, and, as we might expect, the dip in the graph around 90.0 GeV
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corresponds to the peak of the annihilation cross section.

Having calculated the final energy densities of Dirac WIMPs, one might
expect that a similar result could be obtained for Majorana WIMPs by simply
reducing the number of degrees of freedom by a factor 2, unfortunately
however, as was originally pointed out by Goldberg [12] for photinos, the
annihilation cross section for non-relativistic Majorana particles is
momentum dependent. Since the procedure for calculating such a cross
section is slightly unusual, it may be worthwhile to go through some of the
highlights of the non-relativistic calculation. Following Haber and Kane [13],
we simply write down a standard Feynman diagram (fig. 3) where the
directions of the arrows on the X lines are arbitrary. Now, since the X and
anti-X particles are identical fermions, we must ahti—-sgmmetrize under
exchange, which means subtracting the amplitude for a diagram with the roles
of the incoming particles interchanged. To make things a little easier,
however, we can simply anti-symmetrize the vertex first. Writing the vertex

Fig. 3 Feynman diagram for X anti-X annihilation.

factor as A, we have:
A = const.(T(q,s’) M1 - ¥5) ulp,s) -V (p,s)8H(1 - 83) ulg,s7)). (2.34)
But, using the identities
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u(k,s) = CVT(k,s) , (2.35)
viks) = CUT(ks) (2.36)
uT(q,s")CEH1 - 85)u (p,s) = (uT(q,8)CEH(T - Bu (p,s)) T (2.372)
= ul(p,s)CBH(1 + B3 (g,8") (2.37b)
where C is the charge conjugation matrix, we find
A = const. ( 2V (p,s) ¥H ¥ u(g,s”) . (2.38)

Thus, there is effectively only an awial vector coupling for Majorana
annihilation.
We can now write the invariant amplitude for the case M; » my, as
= (ngdMzzcoszew)ﬁ(p,s)ﬁu255u(q,s’)gﬂD'G'B(q’,S’J'if"(CV-EAtﬁ)ue(p’,S)
(2.39)
Using the usual spin-sum and trace techniques we find, neglecting the electron
mass#4, that the unpolarized square of the invariant amplitude is:
= (g4/ 16M,c0846,,)2(Cy? + Cp2)(2my? - 2my2(t+u) + u? + t2 - 2g), (2.40)
where s, t, and u are the usual Mandelstam variables. Hence in the limit that
the % particles are non-relativistic we find, in the center of mass frame
do/df = (Gp2/4m2v) (Cy? +Cp2) |p|2 (1 + cos28) (2.41)
(Gp2/31v) 4 (Cy2 +Cx2) |p|2 . (2.42)

By analogy to quantum mechanics, this momentum dependence is refered to as

or (o

a p-wave suppression.
Krauss [14] gives <|p|2> = (3/,) my kT, s0 we can write
<gv>p = (Gp2/2m) my? Ny (KT/my) = <cvapx (2.43)
where subscripts M and D indicate Majorana and Dirac respectively.
Given this change in the cross section we can repeat the freeze-out
calculations for Majorana WIMPs; eq.s (2.15), (2.18), (2.19), and (2.21) to
(2.24) become: |
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df/dx = bx(f2 - fee?) (2.44)

dfgg/dx = bRpfeg? , at xp = kTg/my . (2.45)

df/dx = bxf2 , x < ¥ . (2.46)

exp (1/%¢) (87372 - 3/2%172) = 2bk¥/(2n)3/2 (2.47)
flxp) & foqlxg) & 1/bxe®) . (2.48)

e} = 2/(b2%® +« bilxg? - x%)) : (2.49)

f0) = 2/b(2x;® + %42) 2 (2.50)

Also, since Majorana particles are their own anti-particles, they have
only half as many degrees of freedom as Dirac particles, so eq.(2.33) becomes
p = myng = my f{0) (47y) Tyo® . (2.51)

The numerical results for Majorana particles are also shown in fig. 2. As was

to be expected, the suppression of the cross section increases the final energy

density of Majorana particles over that of Dirac particles. Using our previous

value for the critical density®®, we find the allowed mass ranges for stable

Majorana WIMPs to be: my < 55 eV, and 9.5 GeV < my < 200 GeV.
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3. Hidden Sectors

At present, there are various theories which predict new exotic particies,
which are, as yet, unobserved. In some theories this non-observance is
explained by the fact that these hypothetical particles interact with ordinary
matter only through the gravitational force. This excludes the possibility
that these particles can be produced in present-day accelerators, hence the
name hidden sectors. Any lab set up to detect some effect of these hidden
particles would require extraordinarily high energies and densities. Of course
the one lab that fits the bill is the early Universe. Presumably, at some very
early time these hidden particles were in a thermal equilibrium with normal
matter, and they effectively decoupled when gravitational interactions became
unimportant on the quantum scale?®, The various exotic particles will remain
in a thermal equilibrium of their own, and different exotic species will drop
out of equilibrium when the temperature drops below their mass. In this
scenario, if a certain species of particles is stable, and we know their cross
section for annihilation, we can go through the same tuype of freeze-out
calculation as in the last section, and find, for a given mass, the resulting
energy density. Alternatively, if we assume a cross-section of the form24

<oy> = «&/m? (3.1)

where « is a dimensionless factor, then for a given mass we can calculate the
value of «, x = z(m), such that the energy density of the species of hidden
particles equals the critical density. Since we have found that the energy

density varies as 1/<ov>, x. is @ minimum allowed value: for a given mass,
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values of « smaller than . will produce an energy density greater than the
critical density. A plot of «; vs. m is given in fig. 4. For large values of m,
becomes incredibly large, so if hidden sectors exist with stable particles
having such large masses, they must experience very strong interactions. An
alternative way to interpret this result is that for a given value of «, there is
a definite mass m, which is an upper bound on the masses of stable particles
which annihilate with the cross-section given by eq. (3.1). For interactions
that correspond in strength to the strong interactions, ie. « = 1, the upper
bound on stable masses is roughly 100 TeV, and for interactions that
correspond in strength to the electroweak interactions, ie. « % /434, the upper
bound is roughly 1 TeV. It should be noted that these limits will apply to the
lightest particle with a particular conserved quantum number, since such a
particle must be stable.

For the special case tﬁat the particle under consideration is the lightest
particle in the sector, then this particle will have no channels that it can
annihilate into, so, the number of these particle per comoving volume must
stay at its equilibrium value. The resulting upper bound on the mass in this

case would be in the eV to hundreds of eV range.
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4. Unstable Weakly Interacting Massive Particles

We now turn to the case of WIMPs which decay into ‘"invisible"?’
ultra-relativistic particles. If the energy density of the WIMPs ever dominates
over that of other particles, it will affect the evolution of the Universe. The
amount of time it takes the X’s to decay, and the amount of time it takes for
its decay products to red-shift away, will determine when and for how long
the Universe is matter or radiation dominated. Not only does a radiation
dominated Universe expand at a different rate from a matter dominated
universe, but density perturbations can only grow?® in a matter dominated
universe. For these reasons limits can be placed on lifetimes for a given
initial 27 energy density for X.

At this point it would be useful to note the difference between the
evolution of ultra-relativistic and non-relativistic energy densities. Since
lengths grow like R(t), number densities are proportional to R(t)™®. Since the
energy of a non-relativistic particle is approximately m, we have

pNR = M const./R? : (4.1)

The energy of an ultra-relativistic particle is equal to its momentum,

which is proportional?® to 1/R(t), so??
pr = const./R4 : (4.2)

With the Universe starting as an ultra-relativistic gas, the energy density
goes as R™4. Eventually, however, as the temperature drops, some particles
become non-relativistic and their energy density will vary as R™3 which must,
at some point, become larger than the energy density of the radiation (or

ultra-relativistic particles). At this point the Universe goes from being
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radiation dominated to matter dominated. If the largest contribution to the
matter energy density is from the X particles, which subsequently decay into
relativistic daughter particles (P’s), then there is a second radiation
dominated era. Finally the energy density of the other non-relativistic

particles catches up, and there is a final matter dominated era. This series of

events is depicted in fig. S.
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Fig. 5. Energy density vs. Cosmic Scale Factor

It should be noted that the approximation that all the X particles decay
simultaneously has, and will be, made in this discussion. It has been shown30

that this sudden decay approximation leads to a 10%-20% error in the final
results.
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It can be seen from fig. S that if the X decay occurs before R = Ry, or if p,
< pyps then neither X nor its decay products significantly affects the
development of the Universe. The constraint that X and its decay products P
do not affect the evolution of the Universe at all, due to the above stated
reasons, results®! in lower upper bounds on possible lifetimes than will be
discussed here.

We can write the energy density of the X particles before decay as

Px = My Mg Ny (4.3)
where T, is the ratio of the number density of X particles to the number
density of photons ny. If we normalize the cosmic scale factor so that at the
present time R{ty) = Ry = 1 ( a subscript , will indicate the present value
throughout), then

Ny = Ny, /R3 . (4.4)
and ny, can be determined from eq (1.25). Using Ty, = 2.7 K, we find that
nge ® 399/cm?, so, p, becomes

Py = My My Ny /R : (4.5)

When the X particles decay at t = tp, R = Rp_their energy goes into their
relativistic decay products, the P’s, which have an energy density given by

Pp = Pco S/ RH ' (4.6)
where 2 represents the ratio of present energy density of a given type of

particle to the present critical energy density

Peo = 3H?/8TG a (4.7)
Jince pp = py at R = Ap, we have

If we now compare the energy density of X’s to other non-relatvistic

particles, we find
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X = Py /PNR = My My Ngo / Peo ONR = 2p 7/ UNR R - (4.9)
As mentioned previously, if x < 1, then the X and P energy densities are never
dominant. However, for x > 1, provided that they do not decay too early, the
X’'s, and later the P’s, do dominate. In fact, if the energy density of the other
non-relativistic particles becomes equal to the energy density of the
background radiation® at R = Rgq, then the X’s begin to dominate at an earlier
time corresponding to
Ry = Rgq/ X : (4.10)
The X domination will continue until R = Rp, then the P’s will dominate
until the non-relativistic particles take over when pyg = pp at Ryg, which is
given by
RN = S?prNR = ®Rp ; (4.11)
To get a constraint on the lifetime of the X particle, we need a relation
between time and the energy density. Following Steigman and Turner [1], we
make the rough approximation3? that during the X domination
BTG py t2 » | : (4.12)
S0, the time of X decay is given by
tp = Rp3/% /(6MG mymy nxe)2 . (4.13)
To obtain the appropriate constraints, we must consider several different
scenarios of X decay; the simplest of these scenarios is that the X’s have not
yet decayed, ie. Rg < Rp. In this case we would require that the present energy
density of the X’s is less than the present critical density, so, from eq.s (4.5)
and (4.7), we have
My My < 3H?2 /8BMGngy =» 15ev. (4.14)
The next case to be considered is that the X’s have decayed, and that their

ultra-relativistic decay products provide the dominant energy density, ie. Rp
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< Ry < Ryg- If the P’s are sufficiently interactionless, then this possibility

cannot be ruled out at present. Again, we make the requirement that the

present energy density of P’s is less than pgg, which, from eq.s (4.8) and
(4.13), gives

tp < 3 Hy? /32(11 G nygqy my My)? (4.15a)

< 1.9% 102 (eV)2 yrs / (my My)? . (4.15b)

Examining the previous inequality, we note that for larger values of
My Ty, the time of decay tp must occur earlier, which means that the era in
which density perturbations can grow is moved further back in the history of
the Universe, and at some point this will conflict with our ideas of galaxy
formation. To explain why this is so, we must present a brief survey of what
these ideas are3,

To explain the observed clustering of matter in our Universe, it is
supposed that these large density variations grew out of small density
perturbations that were present quite early in the evolution of the Universe.
It proves convenient to describe density perturbations by the spectrum of
density contrasts®* (§p/p) over various length scales, and to represent a given
length scale by a comoving®’ length, or, as it is more commonly called, by a
comoving wavelength A. Any comoving wavelength X is related to a proper3®
wavelength , Aprgp, at the present time by X = Aprgp/R. It is useful to
describe the initial spectrum®’ of density contrasts by (8p/ply (), the value
of a density contrast on a given Iength‘ scale A when that scale entered the
horizon, that is when Aprgp = ct. Now, density perturbations not only Tead to
matter clumping, but they also produce anisotropies in the microwave
background radiation; Steigman and Turner [1] require that (8p/p)y be less

than roughly 107 to 1074 for consistency with the measured isotropy of the
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microwave background radiation.

As suggested previously, linear density perturbations (ie. §p/p « 1) grow
proportional to R(t) during matter dominated eras, but do not grow during
radiation dominated eras. At some point R will have increased so much that
the density perturbations enter the non-linear regime (ie. §p/p ~ 1). Steigman
and Turner [1] claim that studies of galaxy-galaxy correlations indicate that
the scale®® A, =5 hy™ Mpc is going non-linear at the present time (where hy
is determined by Hy = 100 hg km/Mpc ).

We now have a condition for the observed gravitational clustering to
occur: during matter dominated eras density contrasts on the scale A, must
grow by a factor » 10% to 104 between the time A, enters the horizon, and the
present. Assuming that Ryp < Ry = 1, the total growth factor for density
perturbations since the beginning of X domination is given by

8 = (Rp/Ry) (Re/RyR) = lfﬂeq : (4.16)
It should be noted that ¥ is independent of any properties of the X’s or P’s, and
has the same value whether of not the X particles exist at all; this can be seen
in fig. 5. For the case Ryg > Ry = 1, ¥ becomes
% = Rp/Ry = HNHfReq - (4.17)
which will actually be slightly larger than the value given in eq. (4.16). To
find the value of Heqv we must have the energy density of the background

radiation
PBR = PyoA/RY (4.18)
where py, is determined from eq. (2.6), and A is given by?®
A= 1+ (T /Tyht Ny = 1+ (P10 (443 Ny, (4.19)

where Ny, is the number of species of 2-component relativistic neutrinos or

WIMPs at the time in question. Now, Req can easily be solved for giving
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8= Hﬂeq = 3QupHe? 7/ 8T G pyp A : (4.20)
For Qnp * 0.2, ¥ x 4 % 103, which is about the factor of growth needed, but
density contrasts on all scales cannot grow by this factor. It is plausibly
assumed that clumping on a given length scale cannot occur until that scale
has entered the horizon (in other words, two particles can not attract each
other gravitationally until they are inside each other’s light cones). This
means that since larger scales enter the horizon at later times, density
contrast for scales above a certain value (ie. that enter the horizon after X
domination has begun) will undergo less growth than is given by eq. (4.16). If
a scale enters the horizon at R = Ry, then the growth that the density contrast

on this scale undergoes is ¥, = ¥(Ry/Ry), or since A = t/R x R1/2,

By = (g /2y )2 ; (4.21)
Using eq.s (4.5) and (4.18) we find that
Ry = pgoA/ My My nyge (4.22)
so, with eq. (4.13)
Ay = (pgoA/6TG)2 /my My o (4.23a)
x 257.9 A2 eV Mpe/mym, . (4.23b)

From this equation we can see that ¥, is independent of A.

To ensure that enough growth of density contrasts occurs at appropriate
scales to account for the presently observed clumping, we can require that X
domination occurs late enough so that density contrasts on the scale hp; = 5
he™! Mpc grow by a factor of roughly 10%. This means that A, > Ap)/2, or4?

My Ty < 100 hy A2 eV = 90 eV ‘ (4.24)

The last scenario of X decay to be considered is that the decay occurs so
early that density contrasts can grow suf'ficientlg in the second matter

dominated era. This will be the case if Ryg < 1073, that is the energy density
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of the non-relativistic matter surpasses the P energy density soon after the X
energy density passes the background radiation energy density, or, to phrase it
in a different manner, the X’s decay soon after becoming dominant. This

constraint implies that*! xRp = Ry < 1073, that is

Rp = 1073 peo NR 7 MyMy N0 ' (4.25)
or42,
tD = (3.{32) (1073 QNH H02)3/2 /G Nyo My Ny )2 (4.263)
< 1.8% 107 (eV)? yrs / (my my )2 (4.26b)

Using the results above, we can easily obtain maximum lifetimes for
masses less than about 3 MeV, by noting that in this mass range3, n, = 3/,
for Majorana particles, and My = §/4 for Dirac particles. However, for WIMPs
with masses above 3 MeV, we shall need the densities calculated in section 2.

A plot of maximum lifetime vs. mass for Majorana particles is shown is
fig. 6. It can be seen, or calculated from eq. (4.26b), that a WIMP with a mass
of 17 keV, corresponding to the so-called "Simpson’s neutrino ", has an upper

bound on its lifetime of about one year.
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9. Conclusion

Although we have given a single set of limits for Dirac and Majorana
WIMPs above , due to the uncertainty in the actual value of the critical density,
these cannot be taken as exact limits. The present critical density is
thought®? to be between 4.67 x 10730 g/cm?® and 1.88 x 10729 g/cm?; the
present energy density of the Universe is also not known exactly, but it is
thought to be between 0.1 p.o and 2 peq. If the present energy density is
larger (smaller) than the critical density, then the allowed energy density of
WIMPs is larger (smaller) as well. Thus, these experimental uncertainties
preclude final, exact limits on WIMP masses, one can only give order of
magnitude estimates.

The same kind of uncertainties apply to our analysis of Hidden Sectors,
and, in addition, we cannot determine exactly the amount of heating (due to the
annihilation of particles with masses below 10'9 GeV) that the photon gas has
undergone since the time these particles are thought to have been in
equilibrium with ordinary matter. As well, the discussion of the growth of
density perturbations is greatly simplified, and necessarily so, since there is,
as Peebles [11] points out, "a broad range of ideas on the origins of galaxies
and clusters of galaxies because it proves easy to invent detailed scenarios
and so difficult to put them to the test.”

Hence, in view of the above stated uncertainties, at present the

constraints calculated in this report can only regarded as rough limits.
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Footnotes

1. Oraninfinite number of singularities.

2. Bystable we mean a lifetime greater than the age of the Universe, ie. © >
1010 years.

3. This follows the nomenclature of Steigman and Turner [1].

4. For a thorough review of Cosmology see Weinberg [2].

9. When discussing temperatures in the early Universe it is often useful to
use eV rather than Kelvin, so that temperatures can compared directly to
energies or masses. The temperature in Kelvin can be found by dividing by k,
Boltzmann’s constant.

6. If the X particles were charged, then photons could also produce X’s and
anti-X’s through pair production.

7. Jince Majarona particles are their own antiparticles, if X were a Majorana
particle, then the number density of anti-X particles would be the number
density of X particles.

8. In the early Universe, assuming positive or negative curvature makes
little difference, see appendix A.

9. ‘Where a is Stephan’s constant. For a more detailed discussion of this
equation see appendix B.

10. See appendix B.

11. See ref. [3].

12. Kolb and Turner [4] give Ny = £ (C,2 + Ca2)j , where the sum is over
particles with masses less than my, and where C, = T3 - 2 Q sin? 8, , and Cyp =
T3, where T3 is the 3 component of weak isospin, Q is the charge, and By is the

Weinberg angle. For calculational purposes we use Lee and Weinberg’s [3] value
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of Ny = 14.

13. This includes a Breit-Wigner resonance, which accounts for the fact that
when the center of mass energy is greater than M5, real Z’s can be produced,
which subsequently decay. See ref [S]. For calculational purposes I'; = 8.0
GeV was used.

14. See appendix B.

15. Here ng = 12, this includes €7, v, LT X, and their antiparticles, assuming
the X’s are Dirac particles.

16. c.f. eq. (2.3)

17. The decoupling temperature used in fig. 2 was adjusted to obtain a
smooth transition from the region m < Tge. to the region m > Tyee.

18. This factor must be even smaller for freezing temperatures above 100
MeV to take into account the annihilation of p*p~, n*n~, etc.

19. See ref. [2]

20. Due to severe technical difficulties, the present neutrino temperature has
not been measured. For a thorough discussion of the measurement of Ty, see
refs. [2] and [6].

21. Seeeq.s(2.16) and (2.11)

22. The critical density is the density corresponding to a flat Universe, that
is, a Universe which is just balanced between collapse and continual
expansion. See appendix A.

23. That is when the temperature dropped below the Planck mass, My = 1/G1/2
= 1.22 % 10 ™ GeV. We will assume that since this decoupling, the number of
degrees of freedom in the ultra-relatvistic gas has decreased by a factor of
100.

24. For a renormalizable theory, and so as to not violate Unitarity, we expect
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this type of form for a cross section, at least at high energies. Unless of
course there is a p-wave supression, as for Majorana particles.

25. ie. particles that interact with ordinary matter at most weakly or
gravitationally.

26. See Mezaros [7].

27. That is the density after any annihilation is finnished.

28. Seeeq. (2.1)

29. Eq. (4.1) and (4.2) can also be obtained by putting the appropriate
equation of state into the the conservation of energy eq. See appendix A.

30. See Turner [8].

31. See Steigman and Turner [1].

32. That is the energy density of photons and neutrinos or WIMPs with masses
less than 1.6 x 1074 eV,

33. See appendix A.

34. The density contrast is actually related to the fourier component of 8p/p.
See ref. [1]

353. A comoving length is a length measured with comoving coordinates.
Comoving coordinates are defined so that fundamental points (points which
follow the expansion of space-time) have constant values as their
coordinates. See Weinberg [2].

36. That is the wavelength actually measured by an observer with "rods" and
"clocks”.

37. Inflationary models predict a Zeldovich spectrum: (8p/p) = const. A0 =
constant, however this spectrum is thought to be reasonable for other reasons
as well, that is, it is the only scale-invariant (power-law) spectrum that does

not blow-up at either large or small scales. See Primack [10]
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38. The scale 1 Mpc corresponds roughly to a galctic size perturbation.
39. The factor of 7/4 accounts for Fermi-Dirac statistics, and the factor 4/,
accounts for the e*e™ heating of the photon gas. See appendix B.
40. Assuming A = 1.45, hy = 0.75.
41. For this condition to apply it is also neccesary that Req < 1073, This
means that, from eq. (3.20)

Req = P¥o A/ PNR Pco » OF SR hy 2 0.024 A,
If Req > 1073, then the required amount of growth would not have occured,
even without any X’s present at all, that is, we can conclude that since
galaxies and clusters did form, our ideas about the formation of large scale
structure are in error.
42. In deference to Steigman and Turner [1] we have taken Qup hy < 0.25; to be
consistent with our previous choice of hy = 0.75, Qg must be Qyp < 0.45.
Jee appendix A.
43. A factor of 3/4 for Fermi-Dirac statistics, 4/, for e*e” heating, and a
factor of 2 for Dirac particles, since they have twice as many degrees of
freedom (ie. particle and antiparticle). See appendix B.
44. ‘When the outgoing particle mass is almost equal to the X mass, there is a
slight rise in the cross section that we will not consider here. See [14]
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Appendix A: Cosmology

The most general metric for an isotropic homogeneous universe is the
Robertson-Walker metric?

ds? = -dt? + R(t)2 (dr2/(1- kr2) + r2de? + r2sin28dy?) . (A.1)
Combining this with the Einstein equations (using the energy momentum tensor
of a perfect fluid) gives an equation for the scale factor R(t),

R2 = (B/)TGpRZ - k . (A.2)
where we have assumed that the cosmological constant A is zero here. We
also have an equation for energy conservation,

BRP = 05 (RB(p+p)) (A.3)
or 4/4r(pR3) = -3pR2 . (A.4)
where p is the pressure, and p the energy density. Given an equation of state p
= p(p), we can solve for p(R). If p = a p, we find

p « p-3(1+a) - (A.5)
For non-relativistic particles a = 0, while for ultra-reletvistic particles a =
/3.

Rewriting eq. (A.2) we can find the present energy density of the Universe
po = (3/81G) (Hy? + k/Ry2) ! (A.6)
where H is Hubble’s parameter, ﬁ/R, and subscripts , indicate the present
value, as throughout. It can easily be seen that the curvature parameter k is
positive or negative depending on whether p, is greater or less than the
critical density

Peo = 3 Ho?/BTG . (A.7)
For pg > pos the Universe is closed and eventually contracts, while for p, <
Pco the Universe is open and expands forever. It should be noted that there is a

large uncertainty associated with the values of p, and Hg. The ratio Q =
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Po/ peo is thought to have a value between 0.1 and 2, although the contribution
due to baryons is measured to be only f2g = 0.01. If we write Hy as Hy = 100h,
km/Mpc s, then the present limits on Hubble’s parameter are 0.5 < hg < 1.
However, large values of both § and hy would require that the Universe to be
quite young. Steigman and Turner [1] give a lower bound on the age of the
Universe of 1.0 -1.3 x 10% years, which, along with hy = 0.5, implies that
Qhy? < 0.25-0.75 . (A.8)

In this report, for calculational purposes we use the value hg = 0.75.

When considering the early Universe, it is common to set k = 0, which
gives a flat Universe with p = p.. Weinberg [2] gives a numerical comparision
of the second and third terms in eq. (A.2), and shows that the curvature term k
has been insignificant up to the present time. Here we will be satisfied with a
hand-waving argument due to Primack [10. One may recall that an
2-dimensional surface, curvature effects are proportional to the area of the
portion of the surface being examined; in the early Universe, the volume that
we can examine is limited by the horizon, so at early enough times curvature
will be ingignificant.

To find an equation giving the age of the Universe as a function of R
during the X domination, we note that during this period the energy density

was proportional to R™3, so from eq. (A.2)

Pu/py = -3R/R = -3(BNGp, /32 . (A.9)
which yields, upon integration
t = 1/(6nG px)‘/z + C, ; (A.10)

It can be shown that C, is less than t, (the time of X domination) by roughly an
order of magnitude, so, for ty <t < tp (the time of X decay) we have
BTG pyt? =~ | . (A.11)
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Po/ peo is thought to have a value between 0.1 and 2, although the contribution
due to baryons is measured to be only g = 0.01. If we write Hy as Hy = 100h,
km/Mpc s, then the present limits on Hubble’s parameter are 0.5 < hg < 1.
However, large values of both € and hy would require that the Universe to be
quite young. Steigman and Turner [1] give a lower bound on the age of the
Universe of 1.0 -1.3 x 10'? years, which, along with hy > 0.5, implies that
Qhy? < 0.25-0.75 . (A.8)

In this report, for calculational purposes we use the value hy = 0.75.

when considering the early Universe, it is common to set k = 0, which
gives a flat Universe with p = p.. Weinberg [2] gives a numerical comparision
of the second and third terms in eq. (A.2), and shows that the curvature term k
has been insignificant up to the present time. Here we will be statisfied with
a hand-waving argument due to Primack [10]. One may recall that on
2-dimensional surface, curvature effects are proportional to the area of the
portion of the surface being examined; in the early Universe, the volume that
we can examine is limited by the horizon, so at early enough times curvature
will be insignificant.

To find an equation giving the age of the Universe as a function of R
during the X domination, we note that during the period the energy density was

proportional to R™3, so from eq. (A.2)

Pu/Py = -3R/R = -3 (BTiGp, /2 . (A.9)
Wwhich yields, upon integration
t = 1/(61Gp)2 + C, - (A.10)

It can be shown that C, is less than ty (the time of X domination) by roughly a
order of magnitude, so, for ty < t < tp (the time of X decay) we have
BTG pyet? =~ | : (A.11)
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Appendix B: Statistical Mechanics

The basic idea that we need to use from Statistical Mechanics is that
particles with integral spin (bosons) obey Bose-Einstein statistics, and thus
have distribution function (which gives the probability that a state of energy E
is occupied) given by

b(E) = 1/(exp((E - u)7KT) - 1) " (B.1)
and particles with half-integral spin (fermions) obey Fermi-Dirac statistics,
and have a distribution function given by
f(E) =  1/(exp((E - p)/KT) + 1) . (B.2)
where k is Boltzmann’s constant, T is the temperature, and p is the chemical
potential. For most presently observed particles, i « kT, so it can safely be
ignored. There is some uncertainty as to whether this is actually true for
neutrinos; Weinberg [2] gives an experimental limit of
| pe | < 60ev . (B.3)

We will assume that yu = 0 for all particles. However, if a particle has a
chemical potential y, then its antiparticle must have a chemical potential -y,
so for photons and non-relativistic Majorana particles, the chemical potential
is identically zero.

Given eq.s (B.1) and (B.2) we can find the number density of bosons and
fermions by integrating over momentum space and dividing by (2mh)?

{following past practice, we will seth=¢ = 1). We find

Ng = (gg/(2m)%) [ d3p (exp((p2 + m)V/2/kT) - 1)1, (B.4a)
= (gg/(2m)?) 47 p? dp (exp((p? + m)/2/KT) - 171, (B.4b)
= { gg/2m?) J:'dp p? (exp((p? + mOV2/kT) - 1)1, (B.4c)

Similarily,
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Ny = (gg/2m2) f;p p? (exp((p? + m)V2/kT) + 1), (B.5)
where gg is the number of ﬁiternal degrees of freedom. For example, a spin-17,
Dirac particles has 4 degrees of freedom, since a Dirac spinor is a four
component object, with 2 degrees of freedom to account for particle and
antiparticle, which is then multiplied by 2, since the particle and antiparticle
have 2 spin states each. Spin'/, Majorana particles have 2 degrees of freedom;
they can be represented by Dirac spinors, but only two of the components are
independent. They have 2 spin states, but they are their own antiparticles.
Photons are spin-1 particles, but only have 2 spin states since they are
massless. They are also their own antiparticle, so they have only 2 degrees of
freedom as well.

Jince the approximate solution for non-relativistic fermions is given in
eq. (2.20), we will concentrate on relativistic particles here, and thereby

uncaover the "mysterious” factors of 3/4 and 7/g. For p » m, we have

Np = (gg/2m2) ﬁp p? (exp( p /kT) - 1)1 \ (B.6)
and
Ny = (ge/2m2) j dp p2 (exp( p ZKT) + 1)~ . (8.7)
Gradshtegn and Ryzhik (o] give the following results:

j dx 071 /(3 - 1) = 20 P(v)L(v) (B.8)

and 5

oo
j dx kP71 /(@3 + 1) = (1-21"0)37? p(v) t(v), (B.9)

o
where I'(v) is the Gamma Function, '(n) = (n - 1)1, and t(v) is the famous
Riemann Zeta function
oo
o) = ) k™ ; (B.10)
K= |
So,
Np = (gg/m?) §(3) (kT (B.11)
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N = (3/4) (gg/m2) E(3) (kT)® . (B.12)
Jimilar results can be found for the energy densities
pp = (gg/212) J:’p pd (exp(p /kT) - )71, (B.13a)
- (gg 112 /30) (KT)* . (B.13b)
pr = (ge/212) j dp p3 (exp(p /kT) + )7, (B.142)
= (T/g) (gg M2 /30) (KT)* ' (B.14b)

where we have used the fact that (4) = 14/90. It is evident that the factors
of 3/, and 7/ arise due to the factor (1 - 2!7?) in eq. (B.9).

Weinberg [2] gives the entropy of a gas in equilibrium (up to an additive
constant) as
S(V,T) = (WM (p(m) + p(T)) (B.15)
where p is the pressure of the gas. Since a volume V in an expanding Universe

will grow like R(t)3, we can define a quantity that is proportional to the

entropy by

s = (R¥T)(p(T) + p(T) . (B.16)
For an ultra-relativistic gas, p = ('/3) p, so

s = (4R3¥/3T) p " (B.17)
which, from eq. (2.6) gives

s = (4/3)Nga(RT)® . (B.18)

Now if Ny is decreased from N, to Ny, due to the annihilation of a species
of particles, s will stay constant (since this is, in principle, a reversable
process), so we have

(Ry T/(Rp Ty) = (Ng, / Ng )3 = h173 (B.19)
For an example we take the e*e” annihilation. From eq. (2.7) we have for the
photon e*e” gas Ny, = (/5) (2 + (T/g)4) = 1 +7/,, and for the photon gas after
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the annihilation, Nfz = 1,80 h =4/, . If R is roughly constant during this
process, Ty* = h T,% or since before the annihilation Ty = Ty = Ty, and
afterwards Ty = T,, we have, at the present time for any relativistic neutrinos
or WIMPs
Tpd = h Tgd = (4,) Ty3 . (B.20)

We can easily do a similar calculation for p*p~, ™, and K*K™ annihilations.
Assuming that there are two types of 2-component neutrinos present in
equilibrium during these annihilations (there could easily be three types,
depending on the mass of v,) we find h = 38/5,, 50/5., and 38/, for the p*u-,

n*n~, and K*K™ annihilations respectively.



