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t- lntroduction

ln recent Usars, particle phusicists have become increasir€lu interested in

the uss of cosmological calculations as tests for their hupothoses about

elcmsntarg particles. Not onlu did particlss in the earlu Univorse have

erprgies that tar exceed the limits of presont dau accelsrators, but also,

donsities at these times were so large that even weaklu interactirE particles

like neutrinos possesssd mean free paths shorter than 3 x 108 m. Under these

conditions, particles that interact with normal matter onlu weaklg or

gravitationallg can produco significant effects, whose repercusions could

still be measurable at the present time.

Constraints from Cosmologu can usuallg be obtairpd bU asking the

question: could a Univsrse containir€ a certain tgpe of particle avolve inlo

ths Univorse that we presentlu observe? ln this paper we will find

mass--lifotime constraints on particles whose strongest interaction is the

weak interaction, and mass--couplirE constant constraints on particles that

interact with normal matter onlu gravitationallu, bU requiring that their

present energg der€itu not exceed ths critical erprgu densitg, and that densitu

perturbations in the earlu Universe be allowed to grow into galaxies.



2. Stable weaklU Intcracting llassiv? PErticlss

At the present time, observable galaxies appear to be engaged in a rapid

expansioni so it vyould seem that in the past the matter of the universe was

more denselU packed than it is now. For the galactic matter to have escapsd

the gravitational potential well of this denser era' it must have been much

more energetic. If we continue to trace this behaviour back further and

further in timg, y/e come to more dsnselg packed epochs' with even more

energetic particles; and eventuallg we come to a EingularitUl where all

Darticles are ultra-relativistic' This is the esssnce of Big Bang Cosmologu.

The Doint that will Frove to be central to our dlscussion of stablez

weaklu interacting massive particles (WIt1Ps3) is that these particles were

0nce moving ultra-relativisticallU,6nd were so dsnselU packed that reactions

occurred veru quicklg, and hence, at veru earlU times all particles comprised a

relativistic gas in thermal equilibrium. This runs counter to the usual cases in

thermodgnamics where thsrmal equilibriums are established after some period

of time; but in the cose of Cosmologu, the Universe rapidlU goes into a thermal

equilibrium ,*hich is eventuallg destroued' This being the case, via can treat

different particles in the earlg lJniverse in a manner somewhat analogous to,

sag, the different modes of vibration and rotation of atoms, or to different

radation mBdes inside a reflecting cavitU.

To begin a discussion of particlas in ths eartu Universe, it is helpful to

recall some results from cosmologg which are derived using the

Robertson-Walker metric4. tlost importantlU, distances between fundamsntal

points (i,e. points follov/ing the expansion of space-time) grow in time
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proportionallg to a scale factor R(t). Since, bg the de Broglie relation,

momenta ars inverselu proportional to w6velengths, theu decrease with time'

Hore concretelg, if a Particle h6s a momentum pr at time tt,6t 8nU subsequent

time t, the particles momentum is

p(!) :  p1 R(ty ' /R(t )  . ( 2 . 1 )

For ultra-relativistic Farticles, this decrease in energg is often relerred to as

'red-shifting awag.' From this relation it is obvious that the energu of a

relativistic gas, and hence its temperature, will decrease as the ljniverse

expands. More preciselUr since kT , where k is Boltzmann's constant and T is

ths temperature, is 6 measure of the average energu of a particle in thermal

equilibrium, the tsmperature of an ultra-relativistic gas is given bU

T(t) = constant/R(t) (2.2J

w? are now in a position to ask what happens to neutral massive spin l/2

pErticles 6s the universe expands, and the relativistic gas it contains coois'

When the temperaturesis much larger than the m6ss, mx of a particle X' the

two competing procssses of creation and annihilation 6re held in balance: X

particles annihilate with anti-X particles' but other particles in the gas have

sufficient ensrgg to create more X's when theu annihilate or decag6' For ang

reaction that destrogs X's, there is E reversed reaction that creates X's' and

these two tupes of reactions occur, on average' equallg often. During this

period the number of x p6rticles per comoving volumess is const6nt, however,

as ths temperature falls below rnx, particles which havs sufficient energg t0

produce X's become incrBasinglg rare, in accordance with the Boltzmann factor

exp(-m*/kT). Thus, although X's continue to 6nnihil6te, thsir rate of

production decreases rapldlU with decreasing temperature, and so the number

of X particles per comoving volume declines. The snnihilation of X particles
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does not continue unabated though, since the annihil6tion rats is proportional

to the X number densitU, n, times the anti-X number densitg, which is

assumed? to b9 equal to n, so as n decreases, the annihilation rate decreases

like n2, For this reason, the decrease in n due to annihilation eventuallU

beeomes insignificant in comparison to th€ decrease in n due to the general

expansi0n of the ljnivsrse, QualitativslU, it Decomes harder and harder for the

x's to find anti-X's to annihilate with, and so theu eventuallu behave as if n0

annihilati0n is allowed. llathematicallU the rate of change of n v/as expressed

bU Lee and weinberg [3] a6

d n/ttt = - 3 ( ft(t)/R(t)) n(t) - <dv> n2(t)

where <dv> is the th€rmal average of the X anti-X

times the relative velocitur and neo is the number

* .5y, iro21q;, 12,31

annihilatiBn cross section

densitu of X particles in

(2,6)

(2.71

thermal equi libriumi that is- f a

non(T) = 2lQl)3 | 4flpzdp (exp(( p2 + mrz)1/2 /kT ) + l)-r (2.41
r6

where the factor 2 comis from assuming X has two spin states (and h = c = l,

as throughout),

It can be shown that in I Universe with a flats Bobertson-Walker metric

the Hubble oarameter is

H = A/B = (B Tf P Gl3 \1/2 , (2'5)

where G is the gravitational constant, and P is the energg densitg of the

relativistic oass:

P = Nr a T4 = Hr ( fl2l15) (kr)4

Nf here is the effective number of degrees of freedom,

N t  =  l / 2 ( n g  +  r T t n t  1

where nb and nf are the total number of internal degrees of freedomlo for all

bosons and fermions present in equilibrium in the gas.
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and

<o v>

when the temperature is bslow mx, the velocities of the X particles ars

non-rel ati vi sti ci for Dirac particles this means that the annihilation cross

section in the center 0f mass frame is proportional to l/v, th?refore <dv> i8

veloeitu, and hence temperature independentll. lf x interacts onlg weaklu, and

m* << 112, the Z boson mass! we can write <dv> as

<dv> = ( Gpzl2n) m*2 Ng , (2.8)

where NA is a dimsnsionl?ss factor which takes into account the various

channels the annihilation can procsed intol2. Unfortunatelu eq' (2.E) is not

valid for large mx; this can be rsctified bg noting the correspondence svident

in the 65w electroweak theorul3:

G7ll2 --> g2l(B((4mxz - tlrz )z + l1r2lr2) cos2 0* ) , (2.9)

.  (2 . r0)

= e4 mx2 NA /(64fl((4mxz - Nzz )? + nzzrz2)cos4ovrsi n49r! ) ' (2'l l)

where 9w is the Weinberg angle, and fz is the resonance vridth of the z boson.

We are making the approximation here that all the X particles have the samg

energu, mx; if we took into account the distribution of energies, the peak in

the eross Bection at mx = Hz would be lowered and spread out'

We are now readu to attempt a calculation of the number densitg of X

particles that survive to the present time. Eq. (2.3) can be simplified bU

making the substitution

n = f  T3 '  nro = fro T3 (2'12)

Using sq. (2.2), this removes the explicit cosmic expansion dependence

from the equation, giving

dl ldt = 'dv'(45/Efi3Nfk49)1/2 (12 - feo2) (2.13)

Revrriting the temperature as

g  :  g s i n 0 \ r
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v/here

(2.14)

(2.15)

(2.16)
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x  =  k T / m x

df /dx = b ( f2  -  feqz)

b = <dv> (mx/k3) (45/6Tr3N IG)t/z

The boundaru condition foreq. (2.15) is that as x --> 6, f(x) approaches

fo"(x), which, from eq. (2.4), is given bU
- &

t  "^ (x)  =  k i  l (2112)  |  Ouu2(exp(u2 + x-z) r ' � l2  + l ) - r ) .  (2 .17)
J O

It is expected the num6er of particles psr comovingss volume, which is

proportional to I, remains approximatelU equal to the numbsr of particles per

comoving volume in equilibrium, feo, until the chemical equilibrium is

destroued 6t the freezing temperaturg, The number densitu of x Farticles in

equilibrium is determined bU the temperature, and decreases rapidlg as T falls

belovi mx, but the tot6l number densitU of X particles can onlg be reduced bU

expansion and annihilation(which decreases rapidlU with n)' The freeze-out'

occurs when the rate of change of n due to the cosmic expansion, -3H n'

becomes much larger than the rate of change of n due to annihilation, <dv> rP.

This condition is roughlu equivalent to requiring that the mean free time of

the X particles becomss greater than the characteristic expansion time. In

terms of our new variables, Lee snd weinberg l5l defined the freezing

temperature, Tf, bg

d fs t /dx  =  b feqz  ,  a t  x f  =  kT f /mx  (2 .18 )

Belovr the freezing temperature, f becomes much larger than t?a, (see fig'

I ) so eq. (2.1 5) can be appro*imated bU

d f l d x  =  b f ?  ,  x .  x 1 . (2.1s)
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T dct'�ao61nt
Fig, l. Sketch of behaviour of f = n T3 and feo =

l"gT
nr' T3. See ref, [3],

If the approximation is made that particles 6r€ non-rel ati vi sti c for

tBmperatures below their mass, then eq. (2.1 7) can be simplifisd:
(2.20a)

(2,20b)

(2.20c)

Thus eo, (2.lE) becomes

exp ( l /x f )  (x; t tz  -  3 x l r tz  1r ,  = 2bk3l(21)3/z .  
(2.21)

which can be solved numericallU to detsrmine xf, When *f < 2/3 we have

f(xf) t feq(xf) * l/(bx1z) (2.22)

Now, solv ing eq.  (2,1s)  g ie lds

f(x)  = i / (bx1z + b(xg -  x))  Q.23)

For rnx > 2 x lo-a evt the present value of x i8 approximatelu zero, so the

Dresent value 0f f is

f(o) = l/b( xfz + xf ) Q.24)

We can now tr6ce the value of n as the temperature drops, but onlu for

masses above about 3 tlevr for mx < 3 tlev a simplification occurs. As the

temperature drops in this energg region, the cross sections for all tupes of

fro(x) t k3hz faOu ut {r*p 1vfi12 + l/v) + l)-1' 
* r<lfnz eip'(- tn\ laU uz ex1(xuz /2 ) , T* mx

)o
N 2kt exp(_t lx)l(2fix)t/z
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weak interactions are dropping. At th? same time, the number densities for 6ll

tgpes of particles 6re decreasing, The result of these two processes is that

wl Ps eventuallU stop intsracting y/ith all tupes of particles, including

themselves. This transition to a Universe which is transparent to Yieak

interactions is known as the neutrino decoupling. For mx < T6ss, the

decoupling temperature, the X's decouple while theg 6re still relativistic, and

hence the number of X particles per comovingss volume for T < Tdec is equal

to the number of X particle$ per comoving volume at T = Tdec.

Following Weinberg [2] roughlg, v{e can calculate the decoupling

temperature bU first noting that all velocities will be of order unitu, and bg

replacing n\ in eq. (2.8) with the averags energg of particles in equilibrium,

kT, Setting NA = I, we have

<dv> = ( GF2/2f'J (kr)z (2.23)

We will also need the number densitU of weaklU interacting fermionsi a

rough result for the number densitg could be obtained bU dividing eq. (2.6) bU

kT, but the exact result isl{

n = l1F 2 q(3) (kT)r /fie

whErg HF = (r/z) ( nq * (3/a) n1 )

is an effective number of degrees of freedom.

At the temperature range of interest, the onlu charged particles present in

substantial numbars are electrons and positrons; there mau or mau not be

several tgpes of neutrinos present, depending on their masses, but there will

at least be De's and anti De's, and probablU u!'6 and anti DU's, present, Thus,

including the x's, we findls, from eq,s (2.26j ann (2.27), that the number

densitU of ultra-relativistic wsaklg intsracting particles is, approximatelU

(2.26)

(2.?7)

nw x (12/rt2) l(5) (kr)3 (2.281



l 0

The rate at which a single x particle is scattsredlG, and the

producti0n per lept0n are then both approximatelg equal to

<dv> nw * (6/Tli) l(3) GF2 (kr)s

From eq,s (2.5) and (2,6), the Hubble parameter is given bU

H = (B rr3 Nr G/ l S)1,/2 (kT)2 (2.t0)

The interaction of X particles ends around the temperature when H

becomes greater than <dv> nw, Thus we examine the ratio

<dv> n*/ H = (3/n4) (t5l2n\f)1/2 (GFzlGrl2) (kT)3

r {T/3x I 0ro K)J

which means that the X decoupling occurs aroundlT T6ss t 381010 K t 3l'1eV.

Dividing eq, (2.26) bg T3, v{e obtain the value Bf f for X particles rYhich

decouple whgn relativisticr

I = (3/2112) l(3) k3 , mx < T6gc Q.32)

This value for f v?lll stau constant until the present time, since the X particles

cease to inter6ct yihen ths tsmperature falls below Tdec.

Now that we have equations for f(0) for all possibl? values of m*, it

yrould seem that we could write down the present energu densitg of the X

particles, however, there is one more significant event to take into account

which happens betyreen tha neutrino decoupling and the prssenti the electron
-Dositron annihilation. This annihilation occurs as the temperature drops

below the mass of the electron rne: .51I fleV; the energu from these particles

goes into heating the photon gas, and onlu a negligible amount goes into

producing neutinog and WIHPS. For this reason, after the e-e- annihilation I

distinction must be made between the temperature of the photons, Td, snd the

temperature of ang relativistic neutrinos 6nd WIHPS, Tu. Whether or not there

are such particles doss not matter here; y?e are using the temperature TD to

rate of X

Q.29)

(2.31a)

(2.3 rb)
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take account of the the expansion of the Univsrse via eq. (2'2).

It can be shown from entropu considerationsl4 that the ene- annihilation

increases the value of B Td bU a factor of (lll1)1/3, so (To/T6)3 is decrsased

bg a factorls Bf 4/u. It is interssting to note that the events that have just

been described, from the Big Bang to the ere- annihilation, all occur within a

span of a few secondslg.

We can now write down the present energu densitg of WltlPs' using the

present temperature of the remnants of the orig'inal ultra-relativistic gas,

thst is the temperature of the microwave background radiation' v{hich has been

measured2o tB be Tdo - 2.? K = 2.3 x l0-a eV. 5o, the present energg densitU

of X ,4d anti-X particles is

p = 2mxno = 2 mx (4/rr ) Tdor f(o) I t  l ? 1

A plot showing P vs. mx is given in fig. 2. The general behaviour of this

graph can be explained quite easilg' For mx < T6sc, f(o) is constant' s0 P c(

m*. For T6r, . mx we note that xF ranges betv{een O and 2/3, so that f(0)

essentiallg varies like l/b. When2t Tdec . fix < t1z, b is proportional to mx3,

so p q mx-z, and for Mz < m;, b is proportional to m*-1, so p u m*2.

lI vie require thEt the present energg densitu of X's is less than the

present critical densitg22 (pco * lxlo-29 g/cm3), then we lind that there are

two mass ranges of stable Dirac WIllPs allowed: mx < 28 eV, and 2.2 GeV < mx

< 920 GeV.

Fig. 2 also dsmonstrates a general featurs of particles annihilating in the

earlU universe; for particles to annihilste fast enough to produce a

sufficientlu small ensrgu densitg, the annlhilation rate must be large. For

masses above T696, the final energg densitU varies roughlU as one over the

cross section, and, as ws might expect, the dip in the graph around 90.0 GeV
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corresponds to the pe6k of the annihilation cross section.

Having calculated the final energg densities of Dirac WIHPS' Bne might

expect that a similar result could be obtainsd for llajor6na WIHPS bU simplu

reducing the number of degre?s ol freedom bU a laclor 2' unfortunatelu

however, as was originallg pointed out bU Goldberg [12] for photinos, the

annihilation cross section for non-rslativistic llajorana particles is

momentum dependent. Sinca the procedure for calculating guch a cross

section is slightlg unusual, it mag be worthwhile to go through some of the

highlights of the non-rel atl vi sti c calculation. Following Haber and Kane [13],

we simplg write down a standard Feunman diagram (fig. 3) whers the

directions of the 6rrows or the X lines are arbitraru' NotY, since the x and

anti-X p6rticles are identical fermions, we must anti-summetrize under

gxchange, whlch means subtracting the amplitude for a diagram viith the roles

of ths incoming particles interchanged. To make things a little easier,

hov?ever, we can simplU anti-summetrize th9 vertex first, Writing the vertet(

Fig. 3 Fegnman diagram for X anti-X annihilation.

factor as A, we haver

I : const.(Tlq,s') 6I( I

But, using the identities

z

- dr) u(p,s) -'ii(p,s)fu(t - fr) u(q,s')). (2.34)
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u (k,s) = c VT(k,s) ,

v (k,s) = cTT{k,s) ,

uT(q,s,)Cdx(l - ds)u (p,s) = (uT(q,s)cdx(r - 6r;u 1p,s)) T

= ur(p,s)C6x( I + d:)u (q,s,)

where C is the charge conjugation mstrix, we find

A = const. ( zT(p,s) dI 6t u (q,s') Q.3g)

Thus, there is effectivelg onlU an 6xi6l vector coupling for llajorana

annihi lation.

W9 can now write the invariant amplitude for the case flz > mx as

= (92/4fl zzcos20r,r)-(p,s)d!dru(q,s')g1pTs(q',5')dD(Cy-C4d5)ur(t',3)
Q.39)

Using the usual spin-sum and trace techniques yre find, neglecting the electron

massaa, that the unpolarized square of the invariant amplitude is:

= (g{/ l6flzcosagw)2(Cy2 + coe;12.r4 - 2mx2(t+u) + uz + tz - 2s), (2'40)

where s, t, and u are the usual Handelstam vdriable6. Hence in the limit that

the I Darticles are non-rel ati vi sti c we find. in the center Bf mass frame

dolnfi = (GFzl4n2v) (cya * caz) lpl2 (l . cos20)

or d = (GF2l3f iv) 4 (cvz + cAz) lp 12
BU analogu to qusntum mechanics, this momentum dependence i6 refered to as

a p-wave suppression.

Krauss l l4l gives . l D l 2> = (3/e) mx kT, so we can write

<6v>n = (GFz 121) mx2 NA (kT/mx) = <dV>D x

where subscripts l'1 and D indicate i'lajorana and Dirac respectivelg.

Given this change in the cross section we can repeat the freeze-out

calculat ions for Majorana wIHPs; eq.s (2.15),  (2.1e),  (2,19),  and (2,21) to
(2.24) becomel

,  (2.41)

(2.42)

(2.5s)

(2.36)

12.37aJ

(2.37b)

(2.43)
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dt ldx = bx(f2 -  f rqz)

tt frq/dx = b x1 fgq2 , at x1 : k T1 / 6,,

d f l d x  =  b x f ?  ,  x  <  x f

exp (llxfl (xf-z/2 - 3 12 x1t/2 | = 2b k3l(2a)t/2

f(xf) r feq(xf) r l/(bxf3)

f(x) = 2/(b zxtt * b(x12 -

(2,441

(2.4s)

(2.46)

(2.4?)

x2) )

Q.4B)

. (2,49)

(2,50)

Also, since Hajorana particles are thelr oyrn anti-particles' theg have

onlg half as mang degrees of freedom as Dir6c particles, so eq.(2'33) becomes

P = mx no = mx f(0) (a/rr ) Tdos (2.s 1)

The numerical results for llajorana partlcles are also shoryn ln flg. 2. As was

to be e:(pected, the suppression of the cross s?ction increa8Es the final energg

densitU of flajorana particler over that of Dirac particles. Using our previous

value for the critic6l densitg3s, we find the allowed mass ranges for stable

llajorana WItlPE to ber mx < 55 eV, and 9,5 GeV < mx < 200 GeV,

f(0) : 2/b( 2xr' r xf )
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3. Hidd?n Sectors

At pres?nt, there are various theories which predict nev{ exotic particles,

which are, as getr unobserved. In some theories this non-observance is

explained bg the fact th6t these hupothetical particles interact vrith ordinaru

matter onlU through the gravitational force. This excludes the possibilitU

that these particles can be producBd in present-dau accelerators, hence the

name hidden sectors, AnU lab set up to detect some effect of these hidden

particles would require extraordinarilU high energies and densities, 0f course

the one lab that fits the bill is the earlu Universe. Presumablu, at some veru

earlg time thsse hidden particles were in a thermal equilibrium with normal

matter, and theg effectivelg decoupled when gravitational interactions became

unimFortant on the quantum gcale23. The various exotic p6rticlss will remain

in a thermal equilibrium of their own, and different exotic species will drop

out of equilibrium when the temperature drops below their mass. ln this

scenari0, if a certain species 0f particles is stable, and we know thsir cross

section for annihilation, we can go through the same tupe of freeze-out

calculation as in the last section, and find, for a given mass, the resulting

energg densitU. Alternativelg, if we assume a cross-section of the formz4

<av> = x2/m2 ( 3 .1 )

where c( is a dimensionless factor, then for a given mass we can calculate the

value of q, s = xr(m), such that the energu densitg of the species of hidden

particles equals the critical densitu. Since vre have found that the energu

densitg varies as l/<dv>, 0(c is a minimum allowed value: for a given mass,
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values of c( smaller than o6 will produce an energu densitg greater than the

critical densitg. A plot of qc vs. m is given in fig' 4' For large values of m' o(

becomes incrediblU large, so if hidden sectors exist with stable particles

h6!ing such large massss, theg must experience veru strong intBractions' An

alternative wau to interpret this result is that for a given value of 0(, there is

a definite mass m, which is an upper bound on the masses of stable particles

which annihilate y?ith the cross-secti0n given bU eq. (3.1). For intsractions

that correspond in strength to the strong intsractlons, ie. a e l, the upper

bound on Etable masses is roughlS 100 TeV, and for interaetions that

correspond in strsngth to the electroweak interactions, ie. u t l/,rr, the upper

bound is roughlg I TeV, It should be noted that these limits Y?ill applg to the

lightest particle with a particular conserved quantum number, sinca such a

particle must be st6ble.

For the spscial case that the particle under consideration is the lightest

particls in the sector, then this particle will have no channels that it can

annihilate into, so, the numbsr of these particle per comoving volume must

stag at its ?quilibrium value, The resulting upper bound on the mass in this

case would be in the eV to hundreds of eV range.
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4. Unstable lveaklg Int?ractlng llasslye PrrticlEs

We now turn to the case of wltlPs whlch decau into 'invisible"25

ultra-relativistic particles. If the energu densitU Bf the WIHPs ever dominates

over that of other particles, it vrill alfect the evolution of the Universe. The

amount of time it takes the X's to decau, and the amount of time it takes for

its decau products to red-shift awag, will determine when and for how long

the Universe is matter or radiation dominated. Not onlg does a radistion

dominated ljniverse exDand at a different r6te from a matter dominated

universe, but densitg perturbations can onlu grow26 in a matter dominated

universe. For these reasons limits can be placed on lifetimes for a given

initial 2? energu densitu for X.

At this point it would be useful to note the difference between the

evolution of ultra-relativistic and non-rel6ti vi sti c energu densities' Since

lengths grow like R(t), numDer densities 6re proportional to F(t)-3, Since the

energg Bf a non-rel ati vi sti c particle is approximatelu m, ws havs

PNF = m const. /B3 (4' l )

The energu of an ultra-relativistic particle is equal to its momentum,

which is proportionalzo to l/F(t), so2s

PR = const./R4 (4.2)

With tha Universe starting as an ultra-relativi6tic gas, the energu densitU

goes as R-i, Eventuallg, however, as the temperature drops, some particles

bscome non-relativistic and their energg dsnsitg will varg as H-3 which must,

at some point, become larger than the energg densitg of the radiation (or

ultra-relativistic particles). At this point the Universe goes from being
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r6di6tion domin6ted to matter dominated. If the largest contribution to the

matter energu densitu is from the X particles, which subsequentlu decau into

relativistic daughter particles (P's), then there is a second radiation

dominated era. Finallg the energu dsnsitU of the other non-rel ati vi sti c

particles catches up, and there is a final matter dominated era. This series of

events is  depicted in f ig.5.

t%f
(densily)

Ir R'l
rnater doninetzd l.d.

dort,

Rlog

4oaiaatcl
lv,. qlt'ev'.

Jo^i ^n+eJ.

Fig. 5. Ensrgg densitU vs. Cosmic $cale Factor

It should be noted that the approximation that 8ll the X particles decau

simultaneouslU has, and witl be, made in this discussion. It has been shoy/n3o

that this sudden decag approximation leads to a lOX-2OX error in the final

results.

4^,);^1,;"^
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It can be seen from fig. 5 th6t if the X decag occurs bef6;s F = Q, or if p;

< fttB, then neither X nor its decag products significantlU affects the

development of the Universe. The constraint that X and its decag products P

do not affsct the evolution of the Univsrse at all, due to the above stated

reasons, resultsll in lower upper bounds on possible lifetimes than will be

discussed here,

Ws can write the energu densitg of ths X particles before decdu as

px = mx r1x nf (4.3)

where Tlx is the ratio of the number densitg of X particles to the number

densitU of photons nd, lf we normallze the cosmic scals factor so that at the

present time R(ts) = Hs = I ( 6 subscript 0 will indicate the present vslue

throughout), then

nd = ndo /Bl

6nd ndo can be determined from eq ( 1.25). Using T60 : 2.? K,

n5q t 399/cm3, so, px beeomes

Px = mx 1* n66 /RJ

(4 .4)

we find that

(4.s)

B o =
to

When the X particles decag at t = tO, B = FO. their energu goes into their

relativistic dscaU products, the P's, ryhich have an energu densitg given bU

Po  =  Pco  QP /Ra {4.6't

a given tgpe ofwhere Q represents the ratio of present energu densitu of

particle to the present criticsl energg densitU

P c o  =  3 H o 2 / A T r G (4.7)

$ince po = px at F = RD, we h.ve

lf we now compare th?

particles,,.,re fi nd

p.s QO / m* 1* n6g

energU densitg of X's

(4.8)

other non-relatvistic
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x . Px /PnA = mx rlr ndo / Pco nnn = J?o / AHn BO . (4.e)

As mentioned previouslU, if x < l, then the X and P energu densities are never

dominant. However, for x > l, provided that theg dB not dgcau too earlg, the

X's, ard later the P's, do dominate, In fact, if the energu densitu of the other

non-rel ati vi sti c particles becomes equal to the ensrgu densitU of the

background radiation3z at R = Feq, then ths X's begin to dominate 6t an earlier

time corresponding to

B x =  F e q l  x  ( 4 . 1 0 )

The X domination will continue until F = h, then the P's will dominate

until the non-relativistie particles t6ke over whsn hlB = go at R16, which is

given bU

BtR = f ip/Qpp = xf ip

To get a constraint on the lifetima of the X particle, vre

between tims and the energg densitg. Following Steigman and

make the rough approximations3 that during the x domination

6 n c p x  t 2  t  I

50, the time of X decau is given bg

tg : Fgrza /(6fi8 mxTlx nto)r/z (4. r 3)

To obtain the appropri6te constraints, we must consider several different

scenarios 0f X decaui the slmplest of these scenarios is that the X's have not

Uet decaged, ie. F0 < h. In thiB case we would require that the present energg

densitu of the X's is less than the present critic;l densitU, so, from eq,s (4.5)

and (4.7), we have

mx r lx  :  3 Hoa /  En G ndo t  15eV. (4.14)

The ne)(t case to be considered is that the X's have decaged, and that their

ultra-relativistic decau products provide the domlnant energg densitg, ie. h

(4. r r)
need a relation

Turner Il ], we

(4.12)
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' Bo ' FNR. If the P's

cannot be ruled out at

present energu densitU
(4.13),  gives

are sufficientlU interactionless, then this possibilitU

present. Again, we make ths requirement that the

of P's is less than pco, which, from eq.s (4.8) and

tg I 5 Hoz /32(r G ndo mx Ttx)2 ( 4 . l 5a )

(4. r sb)j, 1.9 x l0t2 (eV)2 grs / (m* 1*)z

Examining the previous inequ6litg, we note that for larger values of

mxrlx, the time 0f decag tD must occur earlier, which means tnat the era in

which densitg perturbations can grow is moved further back in the historg of

the Universe, and at some point this v{ill conflict rvith our ide6s of galaxu

formatlon. To explain whu this is so, we must present a brief surveu of what

these ideas are3t.

To explain the observed clustering of matter in our ljniverse, it is

supposed that these large densitu variations grew out of small densitu

perturbations that were present quite earlu in the evolution of the Universe.

It proves convenient to describe densitu perturbations bU the spectrum of

densitg contrastss4 (6p/g) over various length scales, and to represent a given

length scale bg a comovingsr length, or, as it is more commonlu called, bU a

comoving wavelength l. AnU comoving wavelength 1, is related to a propersG

\y6velength , Ip1.6p, at the present time bU I = }'0.oplR, It is useful to

describe the inltial spectrums? of densitg contrasts bU (6p/p)H (tr), the value

of a densitu contrast on a given length scale '. vrhen that scale entered the

horizon, that is when \rop = ct. Nowr densitU perturbations not onlU lead to

matter clumping, but theu also produce anisotropies in ths microwave

background radiation; Steigman and Turner Il] require that (6p/p)H be less

than roughlU l0-3 t0 l0-4 for consistencu v{ith ths measured isotropu of the
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microwave background radiation,

As suggested previouslg, linear densitS perturbations (ie. 6p/p < l) grow

proportional to B(t) during matter dominated eras, but do not grow during

radiation dominated eras, At some point B will havs increased so much that

the densitg perturbations enter the non-linear regime (ie,6p/p ! l). Steigman

and Turner l l lc la im that  studies of  galaxu-galaxu correlat ions indicate that

the scaless tnl = 5 ho-l Hpc is going non-linear at the prgsent time (where h0

is determined bU Ho = 100 ho km/ pc s).

We now have a condition for the obsgrved gr6vitational clustering to

occur: during matter dominatsd er6s densitu contrasts on th? scale ln; must

grow bg a factor c 103 to 104 beth,een th? time tnl enters the horizon, and the

pressnt. Assuming that Fpl < Fo = l, the total growth factor for densltu
perturbations since ths bgginning of X domination is given bU

6 = (Bo/Fx) (86/Rpp) = l/Bro (4.16)

It should be noted that d is independent of ang properties of the X's or p,s, and
has the same value whether of not the X particles exist at alli this can De seen
in fig,5. For the case Fpp > Fo = l, d becomes

X = F o / F x = F x 6 / R s q

which will actuallg be slightlg larger than the v6lue given in eq.
find the value of Feo, v{e must have the energu densitg of the
radiation

p g 6  =  9 6 s A l R a
wnere p6o is determined from eq. (2,6), and A is given bgss

A= I  +  (? /s) f iu /T6)at {p  = I  +  (7 /8 t ( / f )1 /3  No, (4.  |  9)

9rhere ND i6 the number of species of 2-component relativietic neutrinos or

WIHPS at the time in question, Now, Feo can easilU be solved for giving

(4.17].

( 4 .16 ) .  To

background

(4 .1E )



d  =  l /Reo  =  3QNFHo2 /EnEpdoA  (4 .20 )

For Qp6 t 0.2, t x 4 x l0:, which is about the f€ctor of growth needed, but

densitg contrasts on all scales cannot grow bg this factor. It i6 plausiblu

assumed that clumping on a given length scale cannot occur until that scale

has entered the horizon (in other worde, two particles can not attract each

other gravitationallU until theu ars in6ide each other's light cones). This

means that since larger scales ent?r the horizon at later times, densitu

contrast for scales above a certain value (ie, that enter the horizon after X

domination has begun) will undergo less growth than is given bU eq, (4.1 6). If

a 6cale enters the horizon at F = Rr, th?n thB growth that the densitg contrast

on this scale undergoes is d1 = d(6*73t;, or since I -- llfl 0-n1/2,

f r  =  d ( t x / t r ) 2

Using eq.s (4.5) and (4. l8) we find that

Rx = pdo A / mx rlx n6q

(4.21)

(4.23a)

(4.23b')

(4.22)

so, with eq. (4. l3)

xx = (ptoA/ortc)1/2 /m*11an6o

x 25?.9 A1/2 eV pc/mxrlx

From this equation we can see that tr is independent of A.

To ensure that enough growth of densitU contrasts occurs at appropriate
scales to account for the presentlg obssrved clumping, we can require that X

domination occurs late enough so that densitg contrasts on the scale h:5
hp-rHpc grow bU a factor of roughlg 103. This means that lx > \,612, orao

mx Ix '  l00hoAl/2 eV ry gOeV (4.24)

The last scenario of X decau to bs considered is that ths decau occurs so
earlg that densitU contrasts can grov/ sutficientlU in the second matter
dominated era, This vrill be the case if Fpp:i 16-:, that is the energu densitu
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of the non-rel6ti vi sti c matter surpasses the p energu densitg soon after th? X
anergg densitU passes the background radiation energg densitg, or, to phrase it
in a different manner, the X,s decag soon after becoming dominant. This
constraint impl ies thatarxRg. HNF. l0-1, that is

flg < l0-: ps6 tlpp / mrlx n6e (4.23)
nr42

t9 g (3/32) (t0-3 Afn Hozltt2 11, G n6s m* 1,6 )2

j 1.8 t 107 (eV)z Urs / (m* 1* )2

(4.26a)

(4.260)

Uslng the results 6bove, we can easilu obtain maximum lifetimes for
msssEs less than about 3 llev, bg notlng that in this mass range43, Ix : 3/ll

for llsjorana particles, and !'{ : 6/,, for 0ir6c particles. However, for Wltlps
with masses above 3llevr we shall need the densities calculated in section 2.

A plot of ma,.imum lifetlme vs, mas8 for llajorana parficles is shovrn is
fig.6. It can be seen, or calculated from eq. (4,26b), that a WInp 'ryith a mass
of l7 kev, corresponding to the so-called ,simpson,s neutrino,, has an upper
bound on its lifetime of about one gsar,
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5. Conclusion

Although we have given a single set of limits for 0irac and tlajorana
WIHPT above, due to the uncertaintg in the actual value of the critical densitg,

these cannot be taken as exsct limits, The present critical dgnsitU is

thoughtls to be between 4,6? x lO-30 g/cm3 and l.8E * lo-2e g/cm3i the
present energg densitu of the Universe is also not knoy/n exactlu, but it is

thought to be between 0.1 pco and 2 P(jo. lt the present energg densitg is

larger (smaller) than the critical densitu, then the allowed energg dEnsitu of

WINPS is larger (smaller) as well. Thus, these experimental uncertainties
preclude final, esact limits on WlhP masses, one can onlu give order of

magnitude estimates,

The same kind of uncertainties applU to our snalgsis of Hidden Sectors,

and, in addition, wB cannot determine exactlu the amount of heating (du? to the

annihilation of particles with masse8 below lolt GeV) that the photon gas has

undergone since the timg the6e particles are thought to have been in

equilibrium with ordinaru matter, As well, the discusslon of the growth of

densitg perturbations is greatlg simplified, and necessarilg so, since there is,
as Peeble€ [l l] points out, 'a broad range of ideas on the origins of galaxiss

and clusters of galaxies because it proves easg to invent detailed scensrios

and so difficult to Dut them to the test,"

Hence, in viery of the above stated uncertainties, at present the

constraints calculated in thl€ report can onlU regarded as rough limits.
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Footnotss

l .  0r an inf ini te number of s ingular l t les,

2. Bg stable v/e mean a lifetime greater than the age of the Univer6e, ie. t >

l0lo gears.

5, This follows the nomenclature of Steigmsn andTurnerIll.

4. For a thorough review of gosmologu see Weinbsrg [21.

5. When discussing tsmperatures in the earlu Universe it is often useful to

use eV rathsr than Kelvin, so that temperatures can compared directlu to

energies or m6sses. The temperature in Kelvin can be found DU dividing bU k,

Boltzmsnn's constant.

6. If the X particles were charged, then photons could also produce X's and

anti-X's through pair production.

7. Since flajarona particles are their own antiparticles, if X were a tlajorana
particle, then the number densitg of anti-X particles yiould be the number

densitU of X particles.

E. In the earlg UnivBrse, assuming positive or negative curvature makes

little difference, see appendix A.

9. Whsre a is Stephan's constant. For a more detailed discussion of this
equation sse appendix B.

10, see appendix B.

I l. See ref. {31.

12. Kolb and Turner [4] give NA : E (Cr2 + C6e1t , where the sum is over
particles with massss less than mx, and where Cv = T3 - 2 Q sin2 0p, anO CO =

T3, where Tt is the 3 component of weak isospin, Q is the charget and Ow is the
Weinberg angle, For calculational purposes we use Lee and Weinberg,s [3] value
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of N4 :  l { .

13, This includ€s a Breit-h,igner resonanse, which sccounts for the fact that
when the center ot mass energu is greater than Mz, real Z,s can be produced,

v{hich subsequ?ntlU dec6u. See ref [5], For calcul6tlonal purposes fz = 6.0
GsV was used.

14, see appendix B.

15. Here nf = 12, this includes e-, De, uu, X, 6nd their antiparticles, assuming

the X's 6re 0irac particles.

16. c.f. eq. (2.J)

17. The decoupling temperature used in fig.2 was adjusted to obtain 6

smooth transition from the region m < T6gc to the regi0n m t Tdec.

lE, This factor must be even smoller for freezing tempsratures above 100

l'1ev to take into account the annihilation of I'jt-, fl*fi-, etc.

19. see rcf , l2l

20. Due to severe technieal difficulties, ths present neutrino temperature has

not been measured, For a thorough discussion of the measurement of Tdo gee

refs. l2l and 16l.

2 l. See eq.s (2. | 6) and (2.I I )
22, The critical densitu is th? densitU corresponding to a flat Universe, that

is, a Univ?rse which is just balanced betvi'een collapse and continual
expansion. See appendix A.

23. That is trhen the temperature dropped belov? the Planck massr $ = l/Gl,/2
= 1,22 N lO te GeV. We will assume th6t since this decoupllng, thB number of

degrees of freedom in the ul tra-rel atvi sti c gas has decreased bU a factor of
100.

24, For a renormalizable theoru, 6nd so as to not viol6te UnitaritU, we expect
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this tupe of form for a cross sec on, at least €t high ensrgies. Unless of
course thera is a p-wave supressi0n, as for llaj0rana particles,
25. ie, particles that intgract with ordinarg matter at most weaklu or
gravitationallU.

26. See Mezarog I7l.

2?. That is the densitU after anu annihilation is finnished.

28 .5eeeq . (2 .1 )

29. Eq. (4.1) and (4,2) can 6lso be obtained bg putting the appropriate
equation 0f state into the the conservaflon of energu eq. See appendix A.
30. See Turner [El.

3!. See Steigman and Turner Il l.
52. That is the ensrgg densitu of photons and neutrinos or Wltlps \yith m8sses
less than 1.6 x l0-{  eV.

J3. See appBndix A,

34, The densitg contrast is actuallU related to the fourier component of 6p/p.
See ref. Il I

35. A comovirg length is a length meosured with comoving coordinates.
Comoying coordinates are defined so that fundamental points (points vrhich
foll0w the expansion of space-time) have constant values as their
coordinates. see !f/einberg [21.
36. That is the lyavelength actuallU messured bg 6n observer with .rods, and
'clocks'.

3?. Inflationary models predict a Zeldovich spectrum: (Sg/pl = const. L0 =
constant, however this spectrum is th0ught to be reasonable for otner rsasons
as well, that is, it is the onlU sc6le-invariant (power-taw) spectrum that does
not blBw-up at either large or small scales. See primack Il0l
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38, The scale I llpc corresponds roughlg to a gslctic size perturbation,

39. ThE factor of ?/0 accounts for Fermi-Dirac statistics, and the factor i/fi

accounts for the e'e- heating of the photon gas. See appendix B.

40. Assuming A = 1,45, ho = 0.75.

41. For this condition to applu it is also neccesaru that %0 < tO-3. Thls
means that, from sq, (3,20)

Beq = Pdo A / gttR Pco , or QNp hs > 0.024 A,

f Qo: 19-s, then the required amount of growth would not have occured,
sven vrithout ang X's prgsent at all, that is, we can conclude that since
galdxies and clusters dld form, our ideas about the formation of large scal?
structure are in error.

42, ln deterence to Steigman and Turner [1] vie have taken e116 h6 < 0.2S; to be

consistent with our previous choice of ho - 0,75, flpp must be etr1g < 0.45.
SeE appendix A.

45, A factor ol zl4 tor Fermi-Dirac statistics, t/11 for e*e- heating, and 6
factor of 2 tor Oirse particles, since theu have twice as m6ng degrees of
treedom (le, particle and antiparticle). See appendix B,

44. l{hen the outgoing particle mass is almost equal to the X mass, there is a
slight rise in the cross section that we wilt not consider here. $ee [14]
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Appendi* A: Cosmologg

The most general metric for an isotropic homogsneous universe is the
Robertson-Walker metric4

dsz = - dtz + F(t)z (dr2l(l- kr2) + 726q2 + rzsin2edg2)

0r

(A.3)

(a.4)

equati0n of state p

(A.r )
C0mbining this y{ith the Einstein equations (using the energg momentum tensor
of a perfect fluid) gives an equ6tion for the scale factor R(t),

f i t  =  ( t l r ) n G P R 2 - k  $ . 2 )
where we have a$sumed that the cosmological constant A is zero here. \te
also have an equation for ensrgg conservation,

i n ,  = 0 7 0 , ( F 3 ( p + p )  I  ,
o / 6 p ( p R 3 )  =  - 3 p R 2

lyhers p is the pressure, and p the energu densitg. Given an
= p(p), we can solve for p(B). If p : a p, we find

"  -  p - 3 ( l  * a ) . {a.s)
For non-rel ati vi sti c particles a c 0, while for ultra-reletvistic aarticles a =

Fewriting eq. (A.2) we can find the present energu densit! of the Universe

Po = $/El G) ( Ho2 + k/Foz) (A.6)

where H is Hubble's parameter, F/8, and subscripts 0 indicate the present

value, a6 throughout. It can easilg be seen that the curvature parameter k is
positive or negative depending on whether p0 is greater or less than the

critical densitu

Pco = 3 tlozl8rtG (a.7)
For p0 > pco, the Ljniverse is closed and eventuallg contracts, while tor p0 <

pco the Univsrse is open 6nd expands forever. It should be noted that there is a

large uncertaintu associated with the values of p0 and H6, The ratio e =
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polpco is thought to havs a value between 0.1 and 2, although ths contribution
due to baruons is measured to be onlu eB * 0,0t. If we write Hs as He = lQQh.
km/l1pc s,  th?n the prssent l imits on Hubble,s parameter are 0.S. ho. l ,
However, large values of both e and h0 would require that the universe to be
quite Uoung, Steigman and Turner Ill give a lower bound on the age of the
Universe of 1,0 - 1,3 x I 010 gears, which, along with h0 : O,S, implies that

Q hoz : 0.25 - 0.?5 (A.E)

In this report, for caicul€tional purposes we use the value ho = 0,2F.
When considBring the earlu Universs, i t  is common to set k:0, which

gives a flat universe with p = pc, weinberg l2l gives a numerical companslon
ol the second and third terms in eq. (A.2), and shows that thB curvature term k

has been insignificant up to the present time. Here we will be satisfied with a
hand-vraving argument due to Primack [10]. one mau recall that on

2-dimensional surface, curvature effects are proportional to the area of the
portion of the surface being examined; in thg earlU Universe, the volume that
we can examine is limited bU the horizont so at earlU enough times curvature

wi l l  be insignif icant.

To find an equation giving the age ot the Universe as a

during the X domination, we note that during this period the
was proportional to F-3, so from eq, (A.2)

i , * /P*  =  -  3 i /F  =  -3 (E f lGpx /3 ) r /2

Which Uields, upon integration

t = l / (6rr  G gx)r/2 + C1 (A. lo)

It can be sho\4,n that Cl is less than tx (the time of X domination) bg roughtU an
order of magnitude, so, for tx < t < t9 (the time of X decau) we have

6 T l G p x t z  s  I  ( A . l  l )

funct ion of  R

energU densitU

(A.e)
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polpco is thought to have I value between 0,I and 2, although ths contribution

due to baruons is measured to be onlu QB e 0.01, If we write H0 as H0 : l0Oh0

km/Hpc s, then the present limits on Hubble's parameter are 0.5 . ho . l.
However, large values of both O and h0 would require th6t thB Universe to be
quite Uoung, Steigm6n 6ndTurnsr l l l  g ive a lower bound on the age of the
Universe of 1.0 -1,3 x l0r0 ge6rs, vrhich, along with h0:0.5, impl ies that

Q hoz : 0.25 - 0.?5 (A.8)

In this report, for calculatlonal purposes we use the value ho = 0.?5.

When considering the earlg Universe, it is common tB set k : 0, which

gives a flat Universe with p: pc. Weinberg l2l giv?s a numerical comparision

of the second and third terms in eq. (A.2), and Ehows th6t the curvature term k

has been insignificant up to the present tims. Here \ee will be statisfied with

I hand-waving argument due to Primack [10]. one mau recall that on

z-dimenslonal surface, eurvature effects are proportional to the area of the
portlon of the surface being e*aminedi in the earlg Universe, the volume that

we can examine is limited bU the horizon, so at earlg enough times curvature

wi l l  be in6ignif icant.

To find an equation giying the age of the ljniverse as a function of R

during the X domination, we note that during the period the energg densitu was
proportional to R-1, so from eq, (A.2)

t a

Px/lx = - 3 R/F = - 3(8Tt6Px/ 3)1/2

Which Uields, upon integrati on

t = l / (6rt  G g*)! /2 .c,  (A.to)

It can be shown that C, is less than tx (the tlme of X domination) bg roughlU a
order of magnitude, so, for tx < t 1t9 (the time of X decau) we have

6 n G p x t ?  t  I  ( A . l  l )

(A.9)
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Appet|dix B: Statistlcal l{echanics

The b6sic ides that v/e need to use from Statistical tlechanics is that
particles with integral spin (bosons) obeg Bose-Einstein statistics, and thus
have distribution function (whlch gives the probabilitU that a state of energu E
is occupied) given bg

b(E) = l/(exp((E - !)/kT) - l) , (B.l)

and particle6 with half-integral spin (fermions) obeg Fermi-Oirac statistics,
8nd have I distribution function givEn bg

f(E) = l/(exp((E - l)/kT) + t) , (B.z)

where k is Boltzmann's constant, T is the temperature, and lr is the chgmical
potBntial, For most pres?ntlg observed psrticles, lr " kT, so it can safelU be
ignored. There is some uncertalntg as to whether this is actuallg true for
neutrinos; WeinDerg l2l gives an experimental limit of

I  l o .  |  ' o o r v (8.3)

We v{ill assume that I s 0 for all particles, However, if a particle has a
chemical potentisl ll, thgn its antiparticle must have 6 chemical potential -Jl�

so for photons and non-rel ati visti c llajor8na particlss, the chemical potential

is identicallg zero.

Given sq.s (B.l) and (8,2) we can find the number densitu of bosons and
fermions bg integrating over momentum space and dividing bg (zflh)l
( fo l lowing past  pract ice,  we wi l l  s8t  h = c:  l ) ,  h.  f in t t

(8.4a)

(8.4b)

(8.4c)

NB = ( gs/(2n)3) J d]p (exp((p2 + n2)t/z/kT, - 1\-l
( gr/(2rr)3) f,an 9z op (exp((pz + m2l1/2/kT) -

( g"lZnzl fq p2 (exp((p2 + m2r|/z/kf) - iJ-1

Si milarilU,
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'ro
Nr = ( gs/2nz) | dp pz (exp((pz + mz:}t/2/kT) + t!-t , (B.S)

rat
where gs is the number of internal degrees of treedom. For erample, a spin_l/2
Dir€c partiel?s has 4 degreee of freedom, since a Dirac sDinor is a four
componsnt object, v{ith 2 degrees of fresdom to account for larticle and
antiparticle, s,'hich is then multiplied bg 2, since the particle and antiparticle
have 2 spin states e6ch, Spinl/2 tlajorana particles have 2 degrees of freedomi
theg can be represented bg Dir6c spinors, but onlg two of the components are
independent, TheU have 2 spin states, but theu are their own antiparticles.
Photons are spin-l particlesr but onlu have 2 spin statEs since theu are
massless. Theg are also their oy/n antipErticle, so theg have onlg 2 degrees of
freedom as well.

Since the approximat€ solution for non-relativistic fermions is given in
eq, (2,2O), yie will concentrate on retativis c particles here, and therebu
uncovsr the 'mgEterious" factors of tlaandr/6. For p )D m, we have

.e
Nb = ( gs/242) | dp p2 (exp( p /kT) - l)-r , (8.6)

. - o
an0

Nf = ( gs/2r12)

Gradshteun and Ruzhik
, o 9 -

I ux xu-l ,r {eax -
. / o

and

I dx xu-l / lsax +

where l(D) is the Gamma

Fiemann Zeta tunction

I ttp p2 (exp( p /kT) + l)-r

l9l give the following results:
l) = a-u r(u) ((u)

l )  =  (  |  -21-u)€-D r (u ) l (u ) ,
Function, t(n) = (n - t)t , and ((u) is the

k-u

(8.7)

(8.8)

(8.9)

famous

l(u) = t
k:t

(8. r 0)
5o,

Hb = (gs/rtz) l(5) (kr)3 (B. r r)
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Nt - (3/r) (gs/rr2) C(3) (kT)3

Similar rgsults can be found for the energg densiues
r &

pb = (gs/2fl?) | dp p3 (exp( p /kT) - l)-r
Ja

= ( gs rr2 /30) (kr){

pr = (gst2lrz) [?p pt <r*pt p /kT) + t)-r
) a

= (?/s) ( 9s n? /30) (kT)4

where we have used the fact th6t l(4) = nal90, It is evident that

01 rl1and 7/s arlse due to the factor (l - 2l 
-u) 

in eq. (8.9).

(8. r 2)

(8. t 56)

tB. l3b)
(8 ,  146)

(B. l4b)

the factors

(8. r 7)

( 8 .18 )

of a species

a revergable

Welnbsrg l2l gives the entropg of a g6s in equilibrium (up to an additive

constant) as

(8. r s)
where p is the pressure of the gas. Since a volume V in an expanding Universe

will grow like R(t)3, we can define a quantitg that is proportional to the

entropu bU

s  =  (F3 / I ) (p (T )  +  o (T ) ) (8. r 6)
For sn ultra-r?lativistic gas, p = (l/:) p, so

s = (4R3|JT) p ,
which, from eq, (2.6) glves

s = (a/r) Nr a (RT)s

Now if Nf is decreased from Nft to l{1, due to thB annihilstion

of particles, s viill stau constant (since this is, in principle,

process), so we have
(FrTt) / (F2T2) = ( l { f ,  /  Nfr) r / r  = hr l3 (8.19)

For sn axample vfe take the e+e- annihitation. From eq, (2.?) we hare for the
photon e 'e-  gas N1,;  ( t / r )  (2.( r ls)4)  - -  |  +r /q,  and fBr the photon gas af ter
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the annihllatlon, Nf, = l, so h = a/rr . lf R ls roughlu con6tant during thls
process, T1l = h Te3, or slnce befors the annihllation Tu . T, = Trr and
afterwards Td : Tz, w? havs, st the pre8ent flme for ang relr vi8tic neutrinos
or lYIllPs

Tu. = h 16, = (1u7 1Ot . (8.20)

We can essilg do a simllar cllculation for !r.lr-, ri'rt-, snd |cK- annihllations.
Assumlng that therB are tero tgpes of 2-component neutrlnos pregent in
equllibrlum during these annihllEtlons (there coutd e.6ilg be thrce tgpes,
depending on the mas6 of or) ryB flnd h : 36/10, :0/53, and 58/5s, for the,r+!-,
fl'fl-, and K+K- annihilatlons respBctlvslU.


